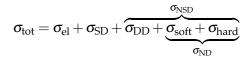
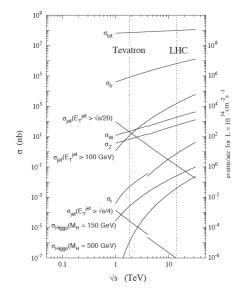
Underlying Event I

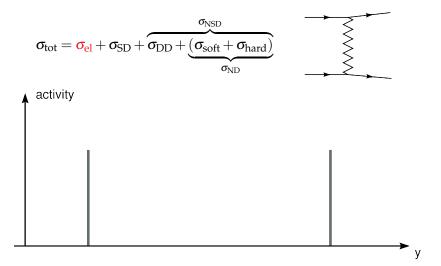
Stefan Gieseke

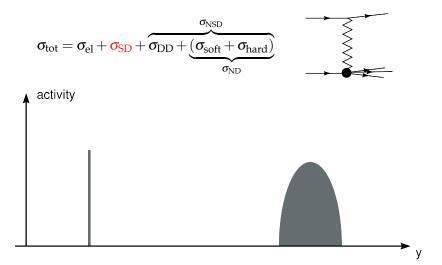
Institut für Theoretische Physik KIT

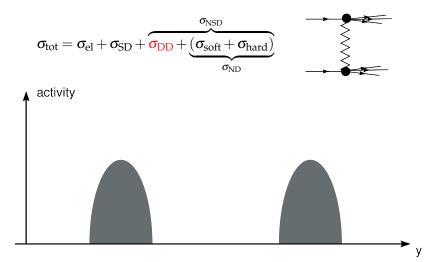
3rd Terascale MC School, 14-17 April 2011

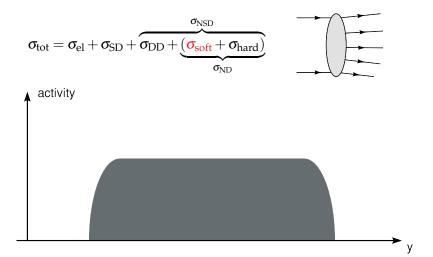


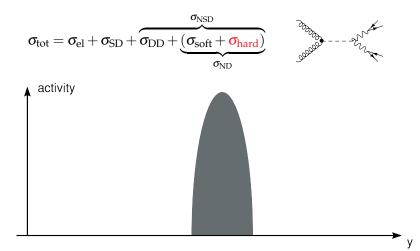


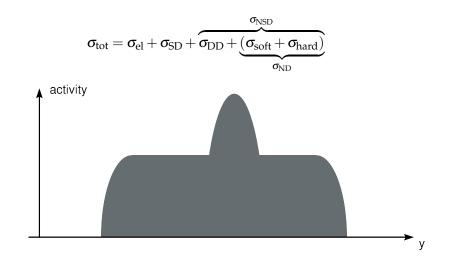

- ► Lecture I Underlying Event: Introduction.
 - Triggers, harder triggers, experimental facts.
- ► Lecture II Underlying Event: Modelling.
 - Mostly Herwig++


- Collider cross sections
- Zero bias, Min bias, Underlying event
- Inclusive \rightarrow exclusive. The structure of underlying events.
- Multiple interactions.


Collider cross sections




single diffractive


double diffractive

(multiple/soft) interactions

hard scattering

hard scattering + underlying event

"Everything except the process of interest."

- Experimentalist: "includes parton showers etc."
- ► MC author: "everything on top of primary hard process." The Underlying event (UE) is everywhere in the detector.
 - Cannot select UE
 - May spoil measurements.
 - What characteristics?
 - ► Hard?
 - ► Soft?

- UE comes with every event.
- Can't trigger/select it away.
- Gives additional tracks and calorimeter hits, in the same cells as your signal.
- ► Jet energy scale determination.
- Important systematic error.
- Jets where your signal shouldn't give any (VBF).

Zero bias

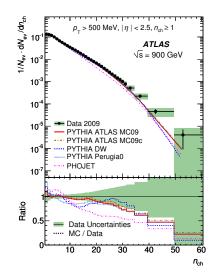
• *Every* event in a perfect 4π detector.

Triggers

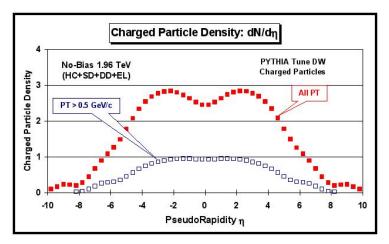
- Zero bias
 - *Every* event in a perfect 4π detector.
- Minimum bias (MB)
 - Require "some activity"
 - At least have to distinguish from noise/cosmics.
 - small number of tracks of charged tracks (e.g. 1, 2, 6),
 - forward calorimeter hits,
 - \rightarrow with some minimum p_{\perp} .
 - Often want non-single-diffractive

Triggers

- Zero bias
 - *Every* event in a perfect 4π detector.
- Minimum bias (MB)
 - Require "some activity"
 - At least have to distinguish from noise/cosmics.
 - small number of tracks of charged tracks (e.g. 1, 2, 6),
 - forward calorimeter hits,
 - \rightarrow with some minimum p_{\perp} .
 - Often want non-single-diffractive
- Hard scattering
 - Very selective trigger
 - BUT accompanied by soft stuff \rightarrow underlying event.

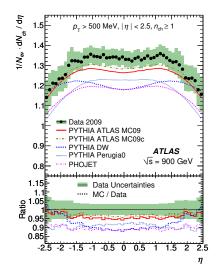

Triggers

- Zero bias
 - *Every* event in a perfect 4π detector.
- Minimum bias (MB)
 - Require "some activity"
 - At least have to distinguish from noise/cosmics.
 - small number of tracks of charged tracks (e.g. 1, 2, 6),
 - forward calorimeter hits,
 - \rightarrow with some minimum p_{\perp} .
 - Often want non-single-diffractive
- Hard scattering
 - Very selective trigger
 - BUT accompanied by soft stuff \rightarrow underlying event.

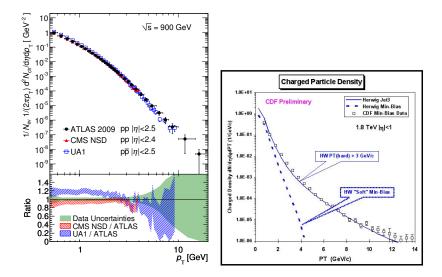

Physics in MB and UE very similar.

Charakteristics of MB events

 $N_{\rm ch}$

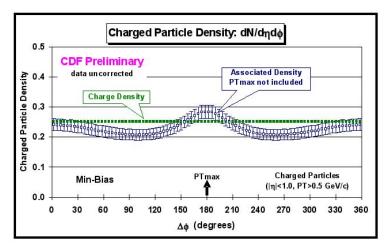


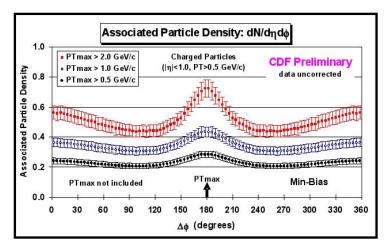
$dN/d\eta$ Zero bias vs min bias (Tevatron)


Charakteristics of MB events

$dN/d\eta$ ATLAS

Charakteristics of MB events


p_{\perp} spectra of all particles

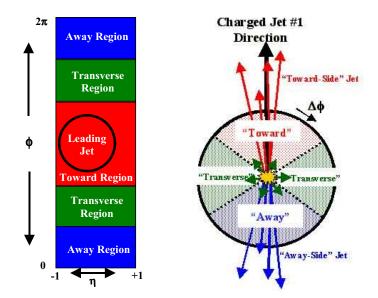

- ► Inclusive quantities have to be correct, of course.
- Already show, that soft component is important in modelling.

- ► Inclusive quantities have to be correct, of course.
- Already show, that soft component is important in modelling.
- Don't tell much about morphology of event.
- \rightarrow look at distributions inside detector.
- \blacktriangleright \rightarrow leading particles.

Measure $\Delta \phi$ relative to leading particle/jet/track.

Measure $\Delta \phi$ relative to leading particle/jet/track.

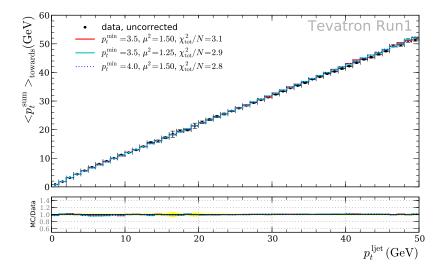
Observation:

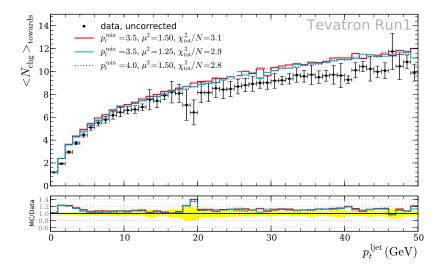

- Events not flat. Have 'leading object'.
- Harder leading object:
 - \rightarrow harder recoil.
 - $\rightarrow~$ more activity everywhere, also transverse.

Trigger: The harder leading object, the more jets are inclusively just below this threshold (pedestal effect).

Closer look at transverse region! "Rick Field analysis"

"Rick Field analysis".

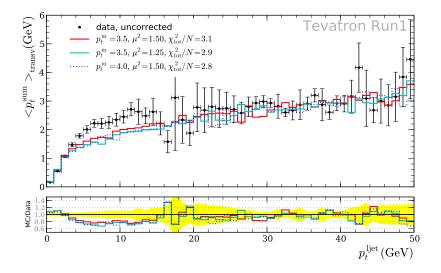

Towards, away, transverse

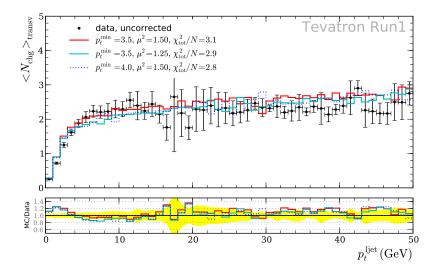

Measurements of the UE: separate from hard bit of event.

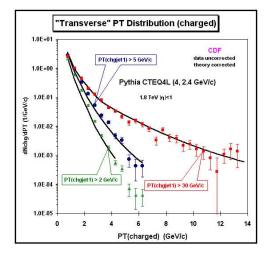
- How big is the 'activity' in the different regions?
- How does it depend on the leading object?
- If UE is really *underlying*, should decouple from leading event.

Detailed look at observables: Towards Region

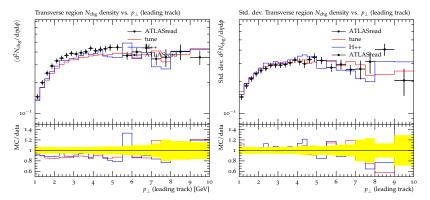
Detailed look at observables: Towards Region


Detailed look at observables: Away Region

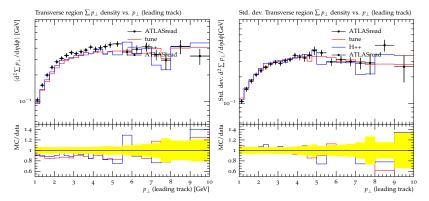

Detailed look at observables: Away Region


Detailed look at observables: Transverse Region

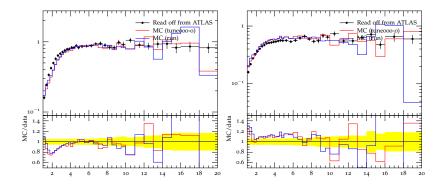
Detailed look at observables: Transverse Region


Spectrum in transverse region

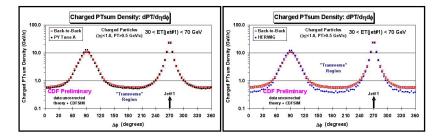
Not only average important. The UE has a jetty substructure!


Underlying Event (ATLAS 900 GeV)

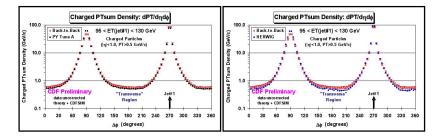
Also include Std deviation!


Underlying Event (ATLAS 900 GeV)

Also include Std deviation!

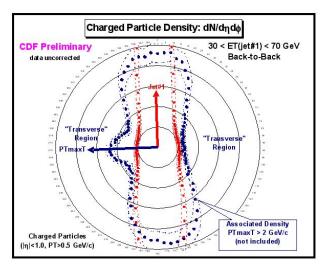

Underlying Event (ATLAS 7 TeV)

 $N_{\rm ch}$ /StdDev transverse vs $p_t^{\rm lead}$ /GeV.

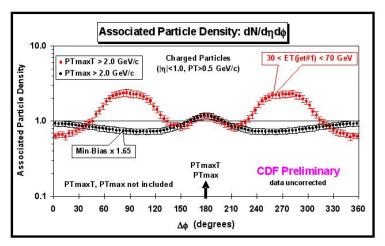

- ► Idea of decoupling UE from hard event seems to hold.
- ► UE has jetty structure.
- Must contain hard physics as well.

Require at least two nearly b2b jets. Dominated by hard physics.

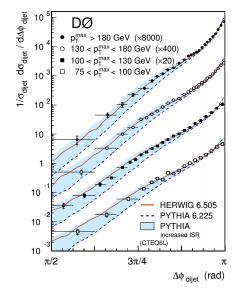
Old Herwig soft model not sufficient.


Require at least two nearly b2b jets. Dominated by hard physics.

Better with harder jets.


More azimuthal distributions

Now select the hardest of the two transverse regions only (TransMAX): associated distribution:



More azimuthal distributions

Now select the hardest of the two transverse regions only (TransMAX): associated distribution:

Birth of 3rd jet \sim leading jet in MinBias

Angles between hard jets modeled by parton showers.

Stefan Gieseke · DESY MC school 2011

- Leading jet in Minimum bias ~ 3rd jet in back-to-back sample.
- UE and MB really seem to reflect the same physics.
- ► Hard component important.
- ▶ Hard jets not sufficient (but well described → D0 dijet angular decorrelation).

Hard jets in the UE via multiple interactions?

- Additional Partonic $2 \rightarrow 2$ interactions (MPI).
- ► No correlation with hard event.

Indirect evidence for MPI

N_{ch} distribution (vs UA5; Sjöstrand, van Zijl (1987))

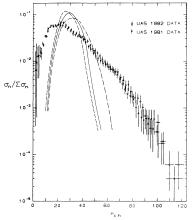


FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

no MPI (left)/MPI (right).

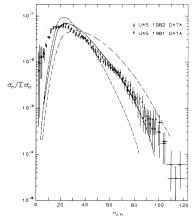


FIG. 5. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs impact-parameter-independent multiple-interaction model: dashed line, $p_{Tmin} = 1.6$ GeV; dashed-dotted line, $p_{Tmin} = 1.6$ GeV.

FB correlation in η bins (vs UA5; Sjöstrand, van Zijl (1987))

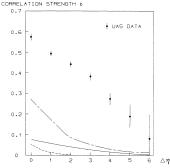


FIG. 4. Forward-backward multiplicity correlation at 540 GeV, UA5 results (Ref. 33) vs simple models; the latter models with notation as in Fig. 3.

no MPI (left)/MPI (right).

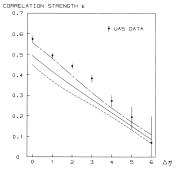
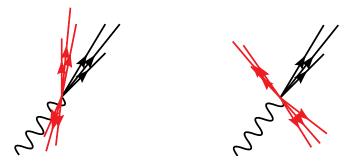
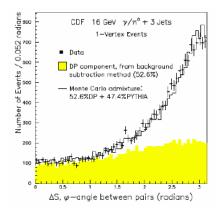



FIG. 6. Forward-backward multiplicity correlation at 540 GeV, UA5 results (Ref. 33) vs impact-parameter-independent multiple-interaction model; the latter with notation as in Fig. 5.


Angle ϕ from 4 final state objects (jets, γ).

Evidence for MPI

Angle ϕ from 4 final state objects (jets, γ). Latest: CDF ('97).

$$\phi = \angle (\vec{p}_1 \pm \vec{p}_2, \vec{p}_3 \pm p_4)$$

53% double parton scattering needed!

Stefan Gieseke · DESY MC school 2011

At hadron colliders:

- Underlying event is everywhere.
- ▶ Min bias is everywhere (pile–up).
- Both contain similar physics.
- The underlying event is "lumpy". It contains soft AND hard physics. Important to get fluctuations as well as averages.
- Important effects based on Multiple Partonic Interactions.