Underlying Event |

Stefan Gieseke

Institut fiir Theoretische Physik
KIT

3rd Terascale MC School, 14-17 April 2011

PHYSICS

T =, %

. //M( net Z SCALE
Karlsruhe Institute of Technology Helmholtz Alliance

Stefan Gieseke - DESY MC school 2011

1/30



» Lecture I — Underlying Event: Introduction.
» Triggers, harder triggers, experimental facts.
» Lecture II — Underlying Event: Modelling.
» Mostly Herwig++
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Collider cross sections

v

v

Zero bias, Min bias, Underlying event

v

Inclusive — exclusive. The structure of underlying events.

v

Multiple interactions.
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Otot = O] + OsD + ODD + (Gsoft + O-hard)
~—————

OND

A activity

single diffractive
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O'NSD
Otot = Oe] + OSD + 0-DD + (o-soft + O-hard
O'N
A activity
double diffractive
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Otot = O] + OsD + ODD + (Gsoft + 0-hard)
—_—
OND

A activity

(multiple/soft) interactions
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A activity

hard scattering
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ONSD
~

Otot = O] + Osp + ODD + (O-soft + Ghard)
~—_— —

OND

A activity

hard scattering + underlying event
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“Everything except the process of interest.”

» Experimentalist: “includes parton showers etc.”

» MC author: “everything on top of primary hard process.”
The Underlying event (UE) is everywhere in the detector.

Cannot select UE

May spoil measurements.

v

v

What characteristics?
Hard?
Soft?

v

v

v
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v

UE comes with every event.

v

Can't trigger/select it away.

v

Gives additional tracks and calorimeter hits, in the same
cells as your signal.

v

Jet energy scale determination.

v

Important systematic error.
» Jets where your signal shouldn’t give any (VBF).
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» Zero bias
» Every event in a perfect 47w detector.
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» Zero bias
» Every event in a perfect 47w detector.
» Minimum bias (MB)

Require “some activity”

At least have to distinguish from noise/cosmics.
small number of tracks of charged tracks (e.g. 1, 2, 6),
forward calorimeter hits,

— with some minimum p, .

Often want non-single—diffractive

vV Y vV VvV VY
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Triggers

» Zero bias

>

Every event in a perfect 47 detector.

» Minimum bias (MB)

>
>

>
>
>

>

Require “some activity”

At least have to distinguish from noise/cosmics.
small number of tracks of charged tracks (e.g. 1, 2, 6),
forward calorimeter hits,

— with some minimum p, .

Often want non-single—diffractive

» Hard scattering

| 4

>

Very selective trigger
BUT accompanied by soft stuff — underlying event.
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Triggers

» Zero bias

>

Every event in a perfect 47 detector.

» Minimum bias (MB)

>
>

>

>
>
>

Require “some activity”

At least have to distinguish from noise/cosmics.
small number of tracks of charged tracks (e.g. 1, 2, 6),
forward calorimeter hits,

— with some minimum p, .

Often want non-single—diffractive

» Hard scattering

>

>

Very selective trigger
BUT accompanied by soft stuff — underlying event.

Physics in MB and UE very similar.
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Charakteristics of MB events

Stefan Gieseke
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dN/dn ATLAS
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p. spectra of all particles

\s = 900 GeV
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» Inclusive quantities have to be correct, of course.

» Already show, that soft component is important in
modelling.
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v

Inclusive quantities have to be correct, of course.

v

Already show, that soft component is important in
modelling.

v

Don’t tell much about morphology of event.

v

— look at distributions inside detector.

v

— leading particles.
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Azimuthal distributions

Measure A¢ relative to leading particle/jet/track.
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Azimuthal distributions

Measure A¢ relative to leading particle/jet/track.

|Associated Particle Density: dN/dnd]
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Observation:

» Events not flat. Have ‘leading object’.
» Harder leading object:
— harder recoil.
— more activity everywhere, also transverse.
Trigger: The harder leading object, the more jets are inclusively
just below this threshold (pedestal effect).
Closer look at transverse region!
“Rick Field analysis”.
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Towards, away, transverse

Away Region

Transverse
Region

Leading
Jet

Toward Region

Transverse
Region

Away Region
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Measurements of the UE: separate from hard bit of event.
» How big is the ‘activity” in the different regions?
» How does it depend on the leading object?

» If UE is really underlying,
should decouple from leading event.
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—
- data, uncorrected

pit =3.5, u?=1.50, x2,/N=3.1
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—
data, uncorrected
pit =3.5, u?=1.50, x2,/N=3.1

—— " =35, 47 =1.25, X,/ N=2.9

P =4.0, =150, x{,/N=2.8
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« data, uncorrected

pt =3.5, u?=1.50, x2/N=3.1
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—
data, uncorrected
pit =3.5, u?=1.50, x2,/N=3.1

—— pMin =35, u?=1.25, x2,/N=2.9
Pt =4.0, u* =150, x5,/ N=2.8

| Te\)afrdn ‘RL‘Jn‘l

Stefan Giescke - DESY MC school 2011




Spectrum in transverse region

|“Tran5verse" PT Distribution (charged)l
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Not only average important. The UE has a jetty substructure!
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Also include Std deviation!

Transverse region Neng density vs. p (leading track) Std. dev. Transverse region Nehg density vs. p (leading track)
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Also include Std deviation!

Transverse region }_p | density vs. p, (leading track) Std. dev. Transverse region }_p, density vs. p | (leading track)
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Na./StdDev transverse vs pid /GeV.
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» Idea of decoupling UE from hard event seems to hold.
» UE has jetty structure.
» Must contain hard physics as well.
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More azimuthal distributions

Require at least two nearly b2b jets.
Dominated by hard physics.

1000

Charged PTsum Density (GeVic)
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Old Herwig soft model not sufficient.
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More azimuthal distributions

Require at least two nearly b2b jets.
Dominated by hard physics.

‘Charged PTsum Density: dPTqud¢| (Charged PTsum Density: dPTIdndQI
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Better with harder jets.
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More azimuthal distributions

Now select the hardest of the two transverse regions only

(TransMAX): associated distribution:

CDF Preliminary
data uncorrected

Charged Particles '
(In<1.0, PT=05 GeV/c)

(Charged Particle Density: dNidrd¢|
g i . 30 < ET{jet#1) < 70 GeV
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Associated Density
PTmaxT > 2 GeV/c
(not included)
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More azimuthal distributions

Now select the hardest of the two transverse regions only
(TransMAX): associated distribution:

|Associated Particle Density: dN/dndg|
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DY
® pi™ > 180 GeV (x8000)
0 130 < p™® < 180 GeV (x400)
® 100 < p"® < 130 GeV (x20)
103L @ 75 < pf**< 100 GeV

1/ gt A0 ey / AAD ey

HERWIG 6.505
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Angles between hard jets modeled by parton showers.
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Towards modelling

v

Leading jet in Minimum bias ~ 3rd jet in back—to-back
sample.

v

UE and MB really seem to reflect the same physics.

v

Hard component important.

v

Hard jets not sufficient
(but well described — DO dijet angular decorrelation).

Hard jets in the UE via multiple interactions?

» Additional Partonic 2 — 2 interactions (MPI).

» No correlation with hard event.
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N, distribution (vs UA5; Sjostrand, van Zijl (1987))

T

107 |
} UAS 1982 DATA
t UAS 1981 DATA
107 B!
/Lo #ﬁ‘
1073

108 PR N
o 20 40 80 EN 100 120

Pch
FIG. 3. Charged-multiplicity distribution at 540 GeV, UAS
results (Ref. 32) vs simple models: dashed low pr only, full in-
cluding hard scatterings, dash-dotted also including initial- and
final-state radiation.

no MPI (left)/MPI (right).
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FIG. 5. Charged-multiplicity distribution at 540 GeV, UAS
results (Ref. 32) vs i ind d Itipl
interaction model: dashed line, prmin=2.0 GeV; solid line,
Prmin=1.6 GeV; dashed-dotted line, prmin=1.2 GeV.
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FB correlation in ) bins (vs UA5; Sjostrand, van Zijl (1987))

CORRELATION STRENGTH b
0.7

$ UAS DATA

0 1 2 3 4 S 6 A7

FIG. 4. Forward-backward multiplicity correlation at 540
GeV, UAS results (Ref. 33) vs simple models; the latter models
with notation as in Fig. 3.

no MPI (left)/MPI (right).
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GeV, UAS results (Ref. 33) vs impact-parameter-independent

multiple-interaction model; the latter with notation as in Fig. 5.




Angle ¢ from 4 final state objects (jets, y).
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Angle ¢ from 4 final state objects (jets, y). Latest: CDF ('97).

¢ = Z(p1 £ P2, P53+ pa)

COF 16 Gev y/n” + 3 Jets
1—Vertex Events

g

= Data

D DF compeonent, from background
subtraction method (52,6%)
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AS, p—angle between pairs (radians)

53% double parton scattering needed!
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Take home

At hadron colliders:

>

>

>

Underlying event is everywhere.
Min bias is everywhere (pile-up).
Both contain similar physics.

The underlying event is “lumpy”.
It contains soft AND hard physics.
Important to get fluctuations as well as averages.

Important effects based on Multiple Partonic Interactions.
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