DESY Terascale MC School 2011 (14-18 March)

CMS MC Tutorial

Motivation: Background information and tutorials on

. accessing computing resources (Ixplus)

. using the CMS software (CMSSW) for MC simulations within the CMS collaboration.

CMS Computing Concepts: This chapter introduces you to the CMS computing environment and to

CMSSW, the software framework used to analyze data in CMS. You will learn how to connect to Ixplus

machines at CERN and to find out which CMSSW releases are available for MC/Detector simulations.

\%

\%

\%

CMSsSwW

CMSsSwW

CMSsSwW

ssh —X username@lxplus.cern.ch

kinit username@CERN.CH

scram list CMSSW

CMSSW_3_9 7 ->/afs/cern.ch/cms/slc5_ia32_gcc434/cms/cmssw/CMSSW_3_9 7
CMSSW_3_9 8 ->/afs/cern.ch/cms/slc5_ia32_gcc434/cms/cmssw/CMSSW_3_9 8

CMSSW_3_9 9 ->/afs/cern.ch/cms/slc5_ia32_gcc434/cms/cmssw/CMSSW_3_9 9

You will see a list with names like CMSSW_X_Y_Z with other suffixes. The names point to directories. For
each listed directory, subsystems are under its src directory, i.e., under cussw 3 9 7. As an example, let's list
the subsystems under this directory.

\%

1ls /afs/cern.ch/cms/slc5_ia32_gcc434/cms/cmssw/CMSSW_3_9_7/src/

Alignment FastSimDataFormats PerfTools SimCalorimetry
AnalysisAlgos FastSimulation CMS.PhysicsTools SimDataFormats
AnalysisExamples GeneratorInterface RecoBTag SimG4Core

Each subsystem contains several packages, for example in /Generatorinterface

Alpgeninterface Configuration Exhumelnterface GenFilter Hijinglnterface MCatNLOiInterface

Pyqueninterface Sherpalnterface AMPTInterface Core ExternalDecays Herwig6interface Hydjetinterface

PartonShowerVeto Pythia6interface ThePEGInterface BeamHaloGenerator CosmicMuonGenerator

GenExtension HiGenCommon LHEInterface Pomwiginterface Pythia8Interface

It shows all generator interface directories in the CMSSW chain. Next page we will create a new project area.

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

DESY Terascale MC School 2011 (14-18 March)

» cmsrel CMSSW_X_ Y_2
> «cd CMSSW_X Y Z/src
» cmsenv

A new project area created in your Ixplus machine in the /afs/cern.ch/user/u/username.

MC Simulations in the CMSSW: This section provides an entry point to the physics event generation

and detector simulation in CMSSW. It should serve as a jump-start for people who will need to prepare
configuration application for central production of the Monte Carlo samples, as representatives of their
Physics groups. All interfaces with generators are in the "Generatorinterface" subsystem in CMSSW. We will
mainly consider Pythia-MC simulations and interface with other parton level generators, namely MadGraph,

Alpgen, SOFTSUSY etc., in the CMSSW.

Pythia-MC: Pythia is a general purpose event generator, containing theory and models for a
number of physics aspects, including hard and soft interactions, parton distributions, initial and
final state parton showers, multiple interactions, fragmentation ("Lund" model) and decays. It has
been largely used in the CMS collaboration for event generation, as well as for hadronization of

the parton-level events coming from one or another Matrix Element (ME) tool of interest to CMS.

In addition to the commands above:
» addpkg GeneratorInterface/Pythia6Interface
> OR cvs co -r CMSSW_X_Y_ 2 GeneratorInterface/Pythia6Interface
» scram b

» cd GeneratorInterface/Pythia6Interface/test

You can see some example files in the test directory.
The two major software components are
» Pythia6GeneratorFilter - full event generation

» Pythia6HadronizerFilter - processing of parton-level event by an ME generator

Both components deliver the same output: HepMCProduct and GenEventinfoProduct (these are common
across CMSSW interfaces to all multi-purpose generators). For a Pythia-MC test run in the CMSSW, execute
the following commands:

Generator Level Simulation:

» «cd CMSSW_X_Y_ Z/src/
» cmsenv
» cp /afs/cern.ch/user/c/cakir/public/MC2011/testPythia.py .

» cmsRun —p testPythia.py &> log_Pythia6MC
You will get 1000 events at generator level in the CMSSW. You can see the HepMCProduct in the /tmp/username/
directory with the name of testPythia_GEN.root.

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

DESY Terascale MC School 2011 (14-18 March)

Example-1: ttbar simulation via Pythia-MC.

» «cp /afs/cern.ch/user/c/cakir/public/MC2011/Pythia_ttbar.py .

» cmsRun —p Pythia_ttbar.py &> log_Pythia6MC_ttbar.py

Now let us revisit some specific details of the configuration card above. The very first line in the example
import FWCore.ParameterSet.Config as cms

is related to the mechanics of the python configuration language. The next line

source = cms.Source("EmptySource")

is a general-purpose Framework Source, that drives event loop and defines ednm: : Event principal, but does not
add any branches to the edm: :Event.

The following line

from Configuration.Generator.PythiaUESettings cfi import *

is important because it brings standard pre-fabricated block to describe setting for the Underlying Event (UE),
as currently approved by the CMS collaboration. Later in this write-up we will revisit several details of the UE

settings.

Specifically, the configuration of the generator's module, Pythia6GeneratorFilter in this case, starts with the
generator = cms.EDFilter("Pythia6GeneratorFilter",
followed by the module's configuration parameters; remember that "generator” is the only label allowed for

any event generation software component within CMSSW.

The following several parameters are of service nature, as they allow various levels of verbosity (here all
configured to "None").

pythiaHepMCVerbosity = cms.untracked.bool(True),

maxEventsToPrint = cms.untracked.int32(0),

pythiaPylistVerbosity = cms.untracked.int32(12),

Obviously, maxEventsToPrint defines how many events one wants to display (starting from the 1st event;
skipping events is NOT possible). Printing out Pythia6-specific event record is controlled by the
pythiaPylistVerbosity parameters; if you are uncertain what setting to choose, please check the

PYLIST(MLIST) settings from Pythia manual.

Finally, the two most essential parameters, as they determine the center of mass energy and event topology
to be generated by Pythia6:

comEnergy = cms.double(7000.0),

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

DESY Terascale MC School 2011 (14-18 March)

Specific to the Pythia6Interface is that it allows to combine Pythia6 configuration cards into groups of
character strings:
PythiaParameters = cms.PSet(
pythiaUESettingsBlock,
processParameters = cms.vstring(...),
This is a vector of ParameterSet names to be read, in this order
parameterSets = cms.vstring('pythiaUESettings',

'processParameters')

The cards provided in the block

processParameters = cms.vstring('MSEL =0 ! User defined processes',
'MSUB(81) =1 ! ggbar to QQbar',
'MSUB(82) =1 ! gg to QQbar',
"MSTP(7) =6 ! flavour = top',
'"PMAS(6,1) = 175. ! top quark mass'),

are specific to the ttbar event generation.

Example-2: Simulation of Z/gamma*+jets via Pythia-MC and analysis of the opposite-sign same-flavor (OSSF)
mass and Electron and Muon Pt distributions at the generator level in the CMSSW framework.

» cp /afs/cern.ch/user/c/cakir/public/MC2011/Pythia_Zgammajets.py
» cmsRun —p Pythia_Zgammajets.py &> log_ Pythia6MC_Zgammajets.py

> cp /afs/cern.ch/user/c/cakir/public/MC2011/analyzeZmass.C

> c¢p /afs/cern.ch/user/c/cakir/public/MC2011/rootlogon.C .

» root —L analyzeZmass.C

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

DESY Terascale MC School 2011 (14-18 March)

Exercise: Simulate H->ZZ->41 (I=muons) events (10K) with Pythia and read the generator level opposite-sign invariant Z

mass (OSSF) and the ZZ mass with the corresponding Higgs candidate.

Hist2muMass 4-umass | HistdmuMass

Entries 2914 Entries 472

F Mean 88.3 Mean 190

C RMS 8.882 i RMS 2.381
300 100
2001 L
r 60—
150 -
- 40—
100/ i

50 2w LL
o ..|....[..‘['T”w.l*r\.nnw.m-i.w oo bend 1 Db 0L
%0 70 80 90 100 110 120 {50 175 180 185 190 195 200 205 210

Detector Level Simulation:

Simulating and reconstructing events with Full/Fast Simulation: the Fast Simulation is based on the same
data formats as the output provided by the complete reconstruction of either fully-simulated or real-data events. As a
consequence, high-level algorithms like ECAL clustering, particle-flow reconstruction, or b-tagging algorithms, can be
used in Fast Simulation without changes. Analysis code is therefore expected to work in a transparent way with the Fast
Simulation.

To create the full configuration file from the generation fragment we will use the same local scram area
(CMSSW_3_9 7).

» «cd ~/CMSSW_3_9_7/src

» cmsenv

> cvs co Configuration/Generator

» scram b

> 1ls Configuration/Generator/python
You can see all generator fragments used in the central MC production. Now we will reconstruct H->ZZ->4[(I=muons) in
the CMS full detector simulation. Use the cmsDriver.py script to convert the generation fragment into a full configuration
file, which can be run with cmsRun. We will apply the “cmsDriver” script in two steps. HLT (High Level Trigger) and RECO
(Reconstruction) steps can be obtained with the following commands

» cmsDriver.py Configuration/Generator/python/H200ZZ4L_cfi.py -s

GEN,SIM,DIGI,L1,DIGI2RAW,HLT:GRun --conditions DESIGN_39 V8::All --datatier GEN-
SIM-RAW --eventcontent RAWSIM -n 10 --fileout RAWSIM.root

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

DESY Terascale MC School 2011 (14-18 March)

This is the HLT step and it can be executed below:
» cmsRun <file-name-for-hlt>.py &> log_hlt_stepl

After HLT events we should reconstruct the samples: For the RECO step

> cmsDriver.py H200ZZ4L_cfi_py GEN_SIM DIGI_L1_DIGI2RAW_HLT -s RAW2DIGI,LlReco,RECO
VALIDATION:validation_prod --conditions DESIGN_39_V8::All --datatier GEN-SIM-RECO -
-eventcontent RECOSIM -n 10 --filein file:RAWSIM.root --fileout RECOSIM.root --
cust_function customisePPMC

> cmsRun <file-name-for-reco>.py &> log_reco_step2

Exercise: Look inside the “RECOSIM.root” file and try to find the experimental observables which are reconstructed

by CMSSW_3 9 7.

FAST-SIMULATION: For the FastSimulation the following cmsDriver commands can be used:

» cmsDriver.py Configuration/Generator/python/H200ZZ4L_cfi.py -s GEN,FASTSIM,HLT:GRun
--pileup=NoPileUp --geometry DB -n 10 --conditions DESIGN_39_V8::All --datatier
GEN-SIM-DIGI-RECO --eventcontent RECOSIM

» cmsRun <file-name-for-fastsim>.py &> log_fastsim_3_9_7

Pythia Hadronization for external Matrix-Element output:

Pythia-MC has been largely used for hadronization of the parton-level events coming from one or another Matrix Element
(ME) tool of interest to CMS. Here are the basic examples on how these files, so called Les Houches Events (LHE),
SUSY Les Houches Accord (SLHA) etc., can be read by the Pythia interface.

Pythia Hadronization for LHE file: There is a dedicated module Pythia6HadronizerFilter, which is different from
Pythia6GeneratorFilter (previous examples) used for full event generation.

» cd GeneratorInterface/Pythia6Interface/test

» less Py6HadFilter_cfg.py OR less Py6HadFilter_mgmatching cfg.py

> cmsRun Py6HadFilter_mgmatching cfg.py &> log_ LHE_MadGraph_MGMMatching

These files are set for Pythia Hadronization and they read LHE flies from MadGraph simulation.

Pythia Hadronization for an SLHA spectrum file: For an accurate calculation of SUSY particle masses, you can
use a dedicated program (ISASUGRA, SUSPECT, SOFTSUSY, ...) to calculate the spectrum and let Pythia6 use this to
generate the events. The SLHA file reading option is available for both Pythia6-based generator modules,
Pythia6GeneratorFilter and Pythia6HadronizerFilter. This means that, in addition to the Pythia6 SUSY event generation,

one can also simulate events from external generator partons.

» cd GeneratorInterface/Pythia6Interface/test

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

DESY Terascale MC School 2011 (14-18 March)

>

less Py6GenFilter_ SLHA cfg.py

You can see the examples GenFilter simulation for SLHA format in the Pythia interface. We will see how these SLHA files

are produced via certain external MC generators/spectrum calculators in the next section.

How to generate SUSY samples using an external SLHA spectrum file:

For this purpose we need to install SOFTSUSY and SUSYHIT programs: For SOFTSUSY

>

>

>

>

mkdir SLHA_Production

cd SLHA_Production

wget http://www.hepforge.org/archive/softsusy/softsusy-3.1.6.tar.gz
tar -zxvf softsusy-3.1l.6.tar.gz

./configure

make

make install

1ls spsSLHAfiles/

You can see input datacards (*.in) for SOFTSUSY run and an output datacard (*.out) as SLHA format. We will use one

“.out” file in the “Py6GenFilter_SLHA_ cfg.py” Pythia simulation card in order to generate SUSY samples in the

CMSSW. The simulation syntax for a specific SUSY point is the following:

>

./softpoint.x leshouches < spsSLHAfiles/<your-file>.in > spsSLHAfiles/<yourout>.out

Exercise: Simulate 12 different m0-m1/2 points (starting from m0=50GeV and m1/2=100) with 50GeV steps

in the SOFTSUSY. Read these files via Pythia simulation and reconstruct them with FastSimulation in the

CMSSW. Finally analyze them related to their cross-section values with the corresponding m0-m1/2 values

on the SUSY plane. (Details Francesco Costanza)

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

DESY Terascale MC School 2011 (14-18 March)

Appendix: Writing your own (ED)Analyzer

You will see the first steps of interacting with the CMS framework and how to write a module where you can put your

analysis code.

>

>

>

cd CMSSW_3_9_7/src
cmsenv

mkdir DESYMC2011

cd DESYMC2011
mkedanlzr DemoMC2011
cd DemoMC2011

scram b

The mkedanlzr script has generated an example python configuration file demoMc2011_cfg.py in the pemomc2011 directory.

Open the file using your favorite text editor and change the data source file. In order to get informations and fill the

histograms, insert the necessary commands in reference 4.

References
1. https://itwiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook
2. https:/itwiki.cern.ch/twiki/bin/view/CMSPublic/SWGuidePythia6interface
3. https://twiki.cern.ch/twiki/bin/view/CMS/GeneratorProduction
4. https:/itwiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookWriteFrameworkModule

Altan Cakir @ DESY-CMS
altan.cakir@desy.de

