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Outline

● Reminder: least square fits

● Constrained fits with technique of 

Lagrangian Multipliers

● Linearization of minimization problems

● Kinematic fits:
● mass constraints

● momentum balance

● unmeasured parameters

● Iterative algorithm and optimization

● Alternative method: minimization of 

cost function

Example: Improvement of top mass
resolution using a kinematic fit



5th April 11 C. Sander - Constrained Fits 3

Reminder: Method of Least Squares

N measurements: y
i
 with variances 

i
2

In case of statistically independent variables the covariance matrix is 
diagonal

Model f
i 
(a

1
 ... a

M 
) with M free parameters a

j

Normalized residuals

The best fitting model parameters should minimize this expression
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Reminder: Method of Least Squares

Minimization of 2 : derivatives with respect to all model parameters a
i
 should 

vanish

Matrix notation for linear models

→ Sum of residuals

...

Normal equation:

Solution:
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2 Distribution & Degrees of Freedom

For N measurements with M fitted parameters,

is distributed according to 2 distribution with k = N − M degrees of freedom.

If we add P constraints between fitted parameters (see later) → number of 
free parameters is reduced by P and the d.o.f. are increased: k = N − M + P
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Interpretation of Results

Pulls: normalized residuals with respect to true values

Properties of pulls for correct model:

● normal distributed with mean 
r
 = 0. If not → systematic errors of measurements.

● variance 
r
 = 1. If large than 1 → errors are underestimated else overestimated.

If 2 follows a 2-distribution with k degrees of freedom → corresponding 
probability distribution is flat!

Example: normal distribution (  = 1 and  = 1) of random variable (one 
measurement N = 1, no fit parameter M = 0 and no constraint P = 0) → k = 1

flat !
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Example: Interpretation of Results

Incorrect model I: true value  offset by +0.5  w.r.t. model
→ pulls shifted to the right, variance OK, probability rises at low values

not flat !

Incorrect model II: true error  larger by factor 1.5 w.r.t. model
→ mean of pulls = 0, variance larger than 1, probability rises at low values

not flat !
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One Parameter for Each Measurement

Linear least squares: fit a function with few parameters to many measurements:

Example: Quadratic fit

Matrix form:

Now: One fit parameter for each measurement

Matrix form:  A = I

The solution of the unconstrained problem is trivial:

x

y, f

i

y, f

1 2 3 4 5 6

pt1  η1   φ1  pt2   η2  φ2   
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Constraints

Example:

Two measurements y
1
 = 1 and y

2
 = 2 

with error  = 1

→ Minimum at a
1
 = 1 and a

2
 = 2

Wanted is the minimum for a
1
 = a

2

A widely used method to solve such a 
minimization problem with additional 
constraints is the Method of 
Lagrangian Multipliers

Problem: the model parameters are not entirely free but the model has to 
fulfill some special condition (constraint)
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Method of Lagrangian Multipliers

The first step is to formulate each constraint as equation that equals zero

Definition of a new function L for P constraints

with Lagrangian Multipliers 
i

Partial derivative w.r.t. 
i
:

→ solution must fulfill the constraints!

Partial derivatives w.r.t. a
i
:

→ for one constraint (P = 1): gradients of 2 function ∇2 and of constraint 
function ∇c must be parallel !

→ 2 function has a local minimum on the constraint contour !
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A Pictorial Representation

Visualization in 2D:
● Solution must lie on zero contour 

of the constraint

● Constraint line must be parallel to 
2 contour at solution, i.e. 
gradients of 2 and constraint 
must be parallel

2 contours

Starting point

a1

a2

Constrait 
contours

Solution

0

Example for 2 parameters a
1
, a

2

and one constraint 
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Explicit Solution of the Example

Back to our problem: minimization of

subject to the constraint

Definition of a Lagrange function

Partial derivatives have to vanish:

 (1)

 (2)

 (3)

Add (1) and (2)

Insert (3)

Solution:
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Exercise 1: Energy Conservation
● A Z0 decays in its rest frame into two massless particles with the opposite 

momentum (back to back) and same energy

● If the energies E
i
 of the particles are measured with an uncertainty , this can be 

formulated as a constrained linear least square problem.

● Assuming perfect angular resolution this problem has only two parameters (E
i
)

Start the virtual machine, open a shell, and copy and extract the exercise material:

$> cp /statistics­school/ConstrainedFits/ConstrainedFits.tgz .
● Unpack the downloaded archive:

$> tar xvzf ConstrainedFits.tgz
● Change into the unpacked directory and run the setup script:

$> cd Constrained

$> . setup.sh
● Do exercise 1a (Energy conservation) 1b (Invariant mass contraint) following the 

instructions on the exercise sheet! (first paper and pen, then run the macro)
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Exercise 1: Summary
● Extremum of 

lies on diagonal in E
1 
− E

2
 plane defined by the constraint

● Solution is symmetric in E
1
, E

2
 if 

1
= 

2

● Energy resolution is improved as expected

● Constraint fulfilled after fit

● Fit has one degree of freedom

● Perfectly gaussian input errors yield flat distribution of 
2-probability and perfect pulls (normalized corrections 
to E

1/2
)

● Systematic shift of input energy is corrected by the fit



5th April 11 C. Sander - Constrained Fits 15

Exercise 1: Summary

Left: Fitted jet energies 
after energy conservation 
constraint

→ Exercise 1a

Middle: 2 profile for one event (blue) and 
invariant mass constraint (red line)

Right: Fitted jet energies after invariant mass 
constraint

→ Exercise 1b
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Non-linear Constraints

In our case: 2 is quadratic in a → derivatives are linear in a:

Constraint functions will in general be non-linear → make a Taylor expansion:

Fully linearized Lagrange function:

Partial derivatives:

In matrix form:

→ Solve this equation to get a better solution, and iterate …
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Problems with Iterative Procedure

The main problem: 

If local linear approximation of constraints is not very good, iterative 
procedure will make too small or too large steps 

→ new solution may not be better (or even worse) than the old one

→ no convergence ! 

Typical problems and ways to overcome/avoid them:

● How to define if a step improves solution (constraints vs. 2) → function of 
merit

● Step with unscaled length does not improve solution → step scaling

● Step rejected by “improvement criteria” (Maratos effect) → 2nd order 
corrections
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Convergence

How to qualify if a step is an improvement or not?

If current parameters away from hyperplane of fulfilled constraints → 
ensure that each step reduces absolute values of constraints

If current parameters are (almost) fulfilling the constraints → ensure that 
objective function (e.g. 2) is reduced

Construct new function of merit:

with   > 0 (good estimate for  is max(
i
) )

One step is accepted if function of merit is reduced!

Convergence: two criteria have to be fulfilled

● Change of 2 becomes small:

● Absolute sum of constraints becomes small:
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Iterative Solution

Example: find minimum of

subject to 

Starting parameters

Local gradient of constraint

Zero contour of linearized
constraint

Solution of linearized problem
local minima of 2 on zero contour
of linearized constraint

Solution of problem:
If step does not “improve” solution,
make smaller step!
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Scaling of Step Length

For non-linear problems step after linearization does not improve 
solution (no reduction of function of merit)

→ scale step length with  (e.g.  = 0.5 )

without scaling with scaling
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with 2nd order correction

Remark: 2nd Order Corrections

If constraints non-linear → one could suffer from Maratos effect, i.e. a step 
calculated from the linearized problem might not improve the merit function 
→ significant slow down of convergence

The following correction will reduce the merit function at least near the 
solution:

where        is the step,         the constraints and A the Jacobian of

This step is only tried once, since back tracking make no sense (         is not 
steepest descent at                   )

no 2nd order correction In this example “only”
small improvement of 
convergence with 2nd 
order correction
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Application in High Energy Physics

Possible applications of constrained fits:
● Vertex constrained track fits
● Tracker Alignment
● Kinematic fits ...

Kinematic Fits:
● If measured jets are decay products of heavy particles → invariant 

mass of added 4-vectors should equal the mass of decaying particle
● Different parametrizations of final state momenta possible (see next 

slide)
● In general the measurements have to be shifted within their 

uncertainty to fulfill the constraint → one parameter per measurement

Problem can be formulated as constrained non-linear least 
square fit
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Invariant Mass Constraints

Example for 2 jets from W decay:

Cartesian parametrization:

Advantage: simple calculation of derivatives, quadratic constraints

Disadvantage: measurements of different jet momentum components are 
correlated (some off-diagonal elements of the covariance matrix are non-
zero)

Different parametrization (here for massless jets):

Advantage: measurements are independent (covariance matrix diagonal)

Disadvantage: highly non-linear constraints, derivatives more complicated
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Exercise 2: W and Top Mass Constraint

● Reconstruction of hadronic top decay
● Measured parameters: one b jet and two W jets = 9 parameters
● Mass constraints:

● One W mass constrained → 2a

● Use known top mass in addition → 2b
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Exercise 2: Summary

● Jet energy resolution is improved in the fit
● Top mass peak becomes narrower and top 

mass resolution is improved
● Jet  and  resolution not significantly 

changed as the assumed uncertainties are 
small

● Small peak at small 2-probability: e.g. from 
events far from the assumed W mass

● 2  follows curve for two d.o.f in case of 
second constraint (2b)

● Pulls slightly distorted in such a more 
“realistic” scenario
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Kinematic Fits of Whole Events

Example: semileptonic     events at Tevatron

If a whole event is fitted the momentum balance can be used as 
additional two constraints (if the initial state has small transverse 
momentum)

In case of hard initial state radiation (ISR) the momentum balance of 
the hard process is broken → the ISR jets have to be taken into 
account
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Unmeasured Parameters

General Problem:
● N measurements     and parameters     as before

● Unmeasurable particles (e.g. ) → M additional unmeasured parameters

● P constraints

● P > M → over-constrained problem

Kinematic fit can be used to reconstruct unmeasured particle

Linearized function L:

with Jacobian A of constraints     with respect to measured parameters

and Jacobian B of constraints     with respect to unmeasured parameters

and

where all derivatives and function values are evaluated at starting values     
and
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Unmeasured Parameters (cont.)

Vanishing derivatives: Overall N + P + M coupled equations

with solution     and     which are new approximation of solution

→ The matrix which has to be inverted has a special structure

→ Special algorithms make use of this structure which can save lots of 
computing resources (depending of the size of the problem)
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Exercise 3: Full Reconstruction of     

Reconstruction of hadronic and semileptonic     events
● Both tops decay hadronically: Perform fit requiring an equal top mass 

on both branches → 3a
● Semi-leptonic decay: Count parameters and find possible setup for 

an over-constrained fit → 3b
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Exercise 3a: Summary

● Both tops decaying hadronically:

2W mass + equal top mass = 3 constr.
● Same mass constraint brings gain in top 

mass width and resolution w.r.t. exercise 2a
● Energy resolution of jets profits from the fit 

as before
● 2 as for three d.o.f. but some events 

accumulate at low fit probability

(Remember: No combinatorics included 
here!)
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Exercise 3b: Summary

● Reconstruction of semileptonic     events
● Measured parameters:

● Two b jets

● Two W jets       15 parameters

● One lepton

● Unmeasured parameters:
● One neutrino = 3 parameters

● Mass constraints:
● Two  W mass

● Two  p
T
 momentum balance 4 ... 6 constraints

● Zero, one (equality of two masses) or two   top mass 

→ Need at least four constraints for kinematic fit!
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Exercise 3b: Summary

● Use 2W-mass +  p
T
-balance + equal top mass 

= 5 constraints

● For some events fit does not converge!

● Top mass reconstruction: good improvement by 
the fit

● Neutrino momentum (p
x
, p

y
, p

z
) reconstructed 

with some width

Fit probability for two d.o.f.: 
not ideally distributed, 
reflects complexity of the 
problem
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Example: SUSY Events

additional jets important for
momentum balance

● Suppression of SM and SUSY background
● 7 jets in final state (huge combinatorial bg)

● all reconstructed

● No perfect mass degeneration

● Width of virtual particles

● +FSR

● +ISR
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Jet Combinatorics

In case of many jets there are a lot of possible jet combinatorics

Example: full hadronic     events with 6 jets, two W jet pairs and two 
identical cascade branches

Without information from b-tagging this leads to

combinations. With b-tagging:

Another example: full hadronic SUSY event with 7 jets, two W jet 
pairs and different cascades → 1260 combinations !
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Finite Width of Constraining Mass

If a mass of a constraint has a non-negligible width

→ Add a new parameter x to the model

x is scaling factor of constraining mass → new constraint has the form:

The new parameter is treated as a new measurement per event with a 
variance according to the mass width:

→ A new 2 term:
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Problems of Non-Linear Least Squares

General problems: 
● Fit can converge at local (and not global) minimum
● Non linear problems can suffer from “Maratos effect”

Alternative: Formulation of constraints as additional 2 term → “cost 
function”, e.g.

with

Minimize cost function: many possible algorithms (gradient, simplex, 
LBFGS, simulated annealing, genetic algorithm …)

In general this quadrature is not advised, but the procedure might 
be useful for very complex problems or for finding good starting values 
of the unmeasured fit parameters
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Remark: Inequality Constraints

Constraints can also be described by inequalities, e.g. if a parameter is 
restricted to positive values

Two possibilities:
● Variable transformation: mapping from finite to infinite parameter 

space, e.g. with trigonometric functions. Often this introduces more 
problems, e.g. additional saddle point or numeric uncertainties

● Modification of Lagrangian multiplier method: separation in active 
and non-active constraints → not simple
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Summary

● (Constrained) kinematic fits provide a powerful tool for event 
reconstruction. They can be used for:

● Improvement of resolutions of measurements
● Improvement of mass resolutions
● Reconstruction of unknown parameters, like neutrino momenta

● Output is a 2 which can be interpreted in terms of probabilities and 
can be used for event hypothesis classification

● Non linear problems have to be solved iteratively. The modification of 
the algorithm to achieve convergence is the hardest part!

● Minimization of scalar cost function might be useful to get good 
starting values of unmeasured parameter
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Backup
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Remark: Scaling of Constraints

If objective function 2 has to be minimized, subject to a number of 
constraints which are not fulfilled at starting parameters, it's possible that 
constraint values are of completely different magnitude!

Function of merit might be dominated by one single constraint

For optimal performance of iterative algorithm → scaling of constraint to 
same order of magnitude

Example: invariant mass constraint in cascade decay

                                                  and

with m
1
 ≪ m

2

Squared mass difference of larger mass m
2
 is dominant → normalize by 

expected uncertainty of constraint, e.g. 
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