Update 25.02.2022

QUBO processing improvements and preparation for the DPG

Spataro David Hamburg, 25.2.2022

QUBO main parameters

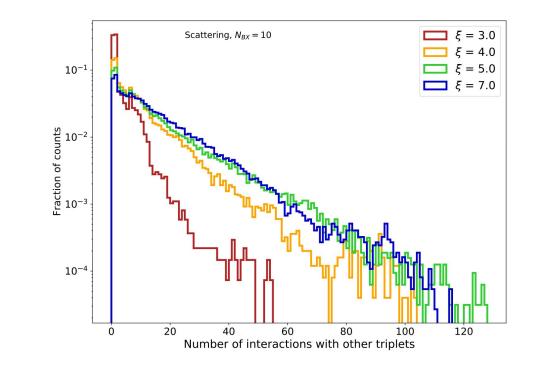
Parameters set via loading yaml file

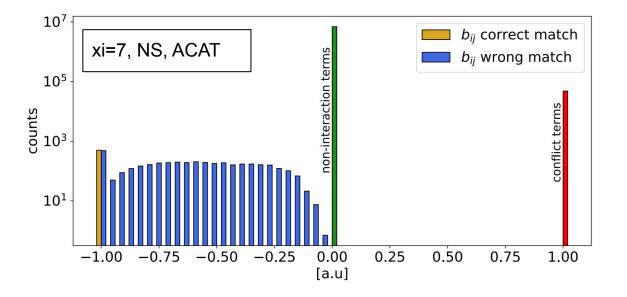
satz parameters:
<pre>name: "TwoLocal"</pre>
circuit depth: 2
num qubits: 7
rotation blocks: "ry"
entanglement blocks: "cx
entanglement: "circular"

solver parameters: mode: "VQE ideal qasm sim" optimizer: "NFT" maxiter: 5000 seed: 42 shots: 10 optimization level: 2

solving: search depth: 1 num qubits: 7 compare to eigensolver: True vqe: True

abu usage: function: "simple tabu initial: True loopwise: True final: True


Ansatz:


- name implies on how the program will handle it
- "Adaptive Locally Connected" will trigger a dynamic ansatz approach, which takes into account the connection between triplets/qubits, only "strong connection" at the moment, later a "weak connection" will be implemented too
- Solver:
 - different modes, Numpy Eigensolver, VQE with/out noise, IBM...
 - more parameters can be added, but that's for fine-tuning things
- QUBO solving:
 - o solving mode, tabu usage, search depth
- tabu usage
 - function (adding new function objects)
 - specify when tabu search should be used

Hamiltonian Energy Calculation I

From Matrix operations to summation

 Before: Energy calculation via matrix, size of matrix is #triplets x #triplets → 250MB for 1800 triplets originating from ~800 tracks on a low hit density sample (xi = 3) ~99% of matrix has a zero as entry Number of interactions seem to "saturate" at some point, so we still expect a nearly empty matrix for high xi values

Hamiltonian Energy Calculation II

From Matrix operations to summation

• Now: Store information about interaction inside the triplet object,

e.g:

- triplet.interactions = {1: -0.67231, 345: 1, 285: -0.93425} \rightarrow no zeros appear, huge decrease in data size
- disk space needed decreased from 250MB to < 1MB and not increasing quadratically anymore!
- energy is calculated by going through the triplets and directly calculating each energy term, very fast, less than half a second per 1800 triplets
- tabu search speed is also increased by that
- possible for ~65k particles just the way it is
 - $\circ~$ 18M Doublets, 3h 45 min , 2GB \rightarrow better split into overlapping areas and solve them

Next tasks

Making "experiments"

- Framework now reworked \rightarrow making a roadmap, including
 - different settings of qubo coefficients
 - xi =3, 4, 5, 6
 - number of qubits = 2, 3, 5, 7, 10, 16
 - Numpy Eigensolver
 - Two Local (different circuit depths)
 - \circ "Adaptive Locally Connected" \rightarrow for DPG
 - two different types