
Dr. Wolfgang Rolke
University of Puerto Rico – Mayaguez

2nd Pan-European Advanced School on 
Statistics in High Energy Physics

March 28, 2022
2gdgdgd2nd Pan-European Advanced School on S2tatistics in 

1



 Problem statement

 Hypothesis testing

 Chi-square test

 Methods based on empirical distribution function

 Other tests

 Power studies

 Running several tests

 Tests for multi-dimensional data

 Special Cases

 Two-Sample Problem (MC vs Sample)

 Conclusions

2



➢ We have a probability model (aka density, 
distribution function)

➢ We have data from an experiment

➢ Does the data agree with the probability 
model? 
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Good Model? Or maybe needs more?
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F: cumulative distribution function (integral of 
density)

𝐻0: 𝐹 = 𝐹0

Usually more useful:

𝐻0: 𝐹 ∊ ℱ0

ℱ0 a family of distributions, indexed by 
parameters. Those need to be estimated from the 
data.
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 Type I error: reject true null hypothesis 
 Type II error: fail to reject false null hypothesis

A: a HT has to have a true type I error probability no higher than the 
nominal one (α)

B: probability of committing the type II error (β) should be as low as 
possible (subject to A). Usually we discuss the power of a test P=1-
β, which then should be as high as possible.

Historically A was achieved either by finding an exact test or having 
a large enough sample.

p value = probability to reject a true null hypothesis when repeating 
the experiment and observing value of test statistic or something 
even less likely.

If method works p-value has uniform distribution.
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Not again …

Actually no, GOF equally important to both 
(everybody has a likelihood)

Maybe more so for Bayesians, no non-
parametric methods.

But GOF is frequentist. Bayesian GOF would 
need prior on space of probability 
distributions.
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Box, G. E. P. (1979), "Robustness in the 
strategy of scientific model building", in 
Launer, R. L.; Wilkinson, G. N. (eds.), 
Robustness in Statistics, Academic Press, 
pp. 201–236.

There is no perfect circle in nature

There is no data set perfectly normally 
distributed (or exponential, or …)
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In frequentist hypothesis testing, if the null 
hypothesis is wrong, a proper test will always 
reject it, as long as the sample size is large 
enough.

But all models are wrong!

So a GOF test will (and should!) always reject the 
null hypothesis for a sufficiently large sample. 

But how bad can a model be if it takes a million 
events to reject it?

If so, it should be useful! What useful means 
depends on the context. (for example testing at 5σ
vs 3σ levels). 
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Usual question: is our theory a good enough model for 
the data?

We also should worry about: is our model better than it 
should be?

➢ Overfitting!

➢ Occam’s Razor: Numquam ponenda est pluralitas 
sine necessitate ( Quantities should not be multiplied 
beyond necessity aka keep it simple!)

➢ Here: the best model is the most basic one that works 
(aka fits the data)
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Theory: die is fair (𝑝𝑖 = Τ1 6)

Experiment: roll die 1000 times

If die is fair one would expect 1000*1/6 = 167 1’s, 2’s 
and so on

Data:

➢ Is this a good fit?

1 2 3 4 5 6

187 168 161 147 176 161
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Sir Karl Pearson (1900), 

“On the criterion that a given system 
of deviations from the probable in 
the case of correlated system of 
variables is such that it can be 
reasonably supposed to have arisen 
from random sampling”, Phil. Mag (5) 
50, 157-175
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Uses as measure of deviations

𝑋2=σ𝑖=1
𝑘 (𝑂𝑖−𝐸𝑖)

2

𝐸𝑖

k: number of classes / categories / bins

𝑂𝑖 : observed counts

𝐸𝑖 : expected counts

Agreement is bad if 𝑋2 is large
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Is 5.72 “large”?

If die is fair and rolled 1000 times, how large 
would 𝑋2 typically be?

Answer: 𝑋2~χ2(𝑘 − 1)

1 2 3 4 5 6

O 187 168 161 147 176 161

E 167.7 167.7 167.7 167.7 167.7 167.7

𝑋2 =
(187 − 167.7)2

167.7
+. . +

161 − 167.7 2

167.7
= 5.72
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So 𝑋2 has a chi square distribution with k-1 degrees of 
freedom (k=number of categories/bins)

Here: 95𝑡ℎ percentile of χ2 5 is 11.07

So our 𝑋2 = 5.72 is not unusually large, die is 
(reasonably) fair.

The derivation of the distribution of 𝑋2 uses several 
approximations, so this needs a sufficiently large 
sample size. But how large does it have to be?

Famous answer: 𝐸𝑖 ≥ 5 for all categories.

William G. Cochran  The [chi-squared] test of goodness 
of fit. Annals of Mathematical Statistics 1952; 25:315–
345.

Seems to have picked 5 for no particular reason. Later 
research showed this is quite conservative. Test 
generally works fine if 𝐸𝑖 ≥ 5 for most i and no 𝐸𝑖 < 1.
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Neyman, Jerzy; Pearson, 
Egon S. (1933). "On the 
Problem of the Most Efficient 
Tests of Statistical 
Hypotheses". Philosophical 
Transactions of the Royal 
Society A:. 231 (694–706)

In a test of a simple vs 
simple hypotheses 
likelihood ratio test is most 
powerful 

In the case of a multinomial 
also leads to 𝑋2!
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https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Egon_Pearson
https://en.wikipedia.org/wiki/Philosophical_Transactions_of_the_Royal_Society_of_London


Samuel S. Wilks: “The 
Large-Sample 
Distribution of the 
Likelihood Ratio for 
Testing Composite 
Hypotheses”, The 
Annals of Mathematical 
Statistics, Vol. 9, No. 1 
(Mar., 1938), pp. 60-62

Λ : Likelihood Ratio

−2𝑙𝑜𝑔Λ ≅ 𝑋2 ~χ2 𝑘 − 1
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Not 
𝐻0: 𝐹 = 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) (simple hypothesis)

but 
𝐻0: 𝐹 = 𝑁𝑜𝑟𝑚𝑎𝑙 (composite hypothesis)

Idea: find estimates of parameters, use those. 

Any change in test? Pearson said no.

In 1915 Greenwood and Yule publish an analysis of 
a 2x2 table and note that there is a problem.

In 1922, 1924 and 1926 Sir Karl Fisher published 
several papers showing that Pearson was wrong.
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If m parameters are estimated 
𝑋2~χ2(𝑘 − 1 −𝑚)

The 1922 paper is the first ever to use 
the term “degrees of freedom”.

In some ways this is an astonishing 
result: it does not seem to matter how 
well one can estimate the parameter 
(aka what the sample size is)

Does it matter what method of 
estimation is used? Yes, and it has to 
be minimum chi-square!

Except these days everyone is using 
maximum likelihood, and then this 
result can be wrong

Pearson didn’t acknowledge Fisher 
was right until 1935!
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Mendel, J.G. (1866). "Versuche über 
Pflanzenhybriden", Verhandlungen des 
naturforschenden Vereines in Brünn, Bd. IV 
für das Jahr, 1865, Abhandlungen: 3–47

Discovery of Mendelian inheritance

Immediate impact on Science: ZERO!

Darwin could have used this when he wrote 
On The Origin of Species.
His cousin Francis Galton (inventor of 
regression!) could have told him.



Around 1900, Hugo de Vries and Carl Correns

first independently repeat some of Mendel’s 

experiments and then rediscover Mendel's

writings and laws.

Finally Mendel becomes the “Father of Genetics”

Fisher, R.A. (1936). "Has Mendel's work been 
rediscovered?" . Annals of Science. 1 (2): 115–137.

Fisher re-analyzed Mendel’s data and applied the 𝑋2

test to all of them together. He finds an (almost) 
perfect agreement. But inheritance is intrinsically 
random, the agreement should not be that good.

Fisher’s words: “to good to be true”

https://en.wikipedia.org/wiki/Hugo_de_Vries
https://en.wikipedia.org/wiki/Carl_Correns
https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15123/1/144.pdf


𝑋2 large (blue area)

→ difference between O 
and E to large

→ theory doesn’t agree 
with data

𝑋2 small (red area)

→ difference between O 
and E to small

→ Cheating!



More than 50 papers published since 1936 have 
tried to figure out what happened.

For a long time: it was the Gardener!

Another explanation, which seems to have gained 
momentum in recent years: It was early in the 
history of experimentation, modern ideas of how to 
avoid (even unconscious) biases were not yet 
developed.

Allan Franklin, A. W. F. Edwards, Daniel J. Fairbanks, 
Daniel L. Hartl and Teddy Seidenfeld.  “Ending the 
Mendel-Fisher Controversy”, University of 
Pittsburgh Press, 2008. 



Question used to be: which converges fastest 
to χ2?

But these days null distribution can be found 
most easily using Monte Carlo simulation!
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function(B=1e4) {

O<-c(187,168,161,147,176,161)

E<-rep(1,6)/6*1000

TS.Data<-rep(0,5)

TS.Data[1]<-sum( (O-E)^2/E)

TS.Data[2]<-2*sum(O*log(O/E))

TS.Data[3]<-4*sum( (sqrt(O)-sqrt(E))^2)

TS.Data[4]<-sum( (O-E)^2/O)    

TS.Data[5]<-2*sum(E*log(E/O))

TS.Sim<-matrix(0,B,5)

for(i in 1:B) {

O<-table(sample(1:6,size=1000,replace=T))

TS.Sim[i,1]<-sum( (O-E)^2/E)

TS.Sim[i,2]<-2*sum(O*log(O/E))

TS.Sim[i,3]<-4*sum( (sqrt(O)-sqrt(E))^2)

TS.Sim[i,4]<-sum( (O-E)^2/O)    

TS.Sim[i,5]<-2*sum(E*log(E/O))

}

list(TS.Data,apply(TS.Sim,2,quantile,0.95))

}



function(B=1e4) {

crit95<-c(10.95, 10.97, 10.95, 11.08, 11.00)

E<-rep(1,6)/6*1000

TS.Sim<-matrix(0,B,5)

for(i in 1:B) {

O<-table(sample(1:6,size=1000,replace=T,

prob=c(1.25,1,1,1,1,1)))

TS.Sim[i,1]<-sum( (O-E)^2/E)

TS.Sim[i,2]<-2*sum(O*log(O/E))

TS.Sim[i,3]<-4*sum( (sqrt(O)-sqrt(E))^2)

TS.Sim[i,4]<-sum( (O-E)^2/O)    

TS.Sim[i,5]<-2*sum(E*log(E/O))

}

power<-rep(0,5)

for(i in 1:5) power[i]<- s    
sum(TS.Sim[,i]>crit95[i])/B

power

}

Simulated loaded die has a slightly higher 

probability for a “1”.
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Need to bin the data

In principle any binning is ok, as long as 
expected counts are not to low

Two obvious questions: 

1) What kind of bins?

2) How many bins?
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Equi-distant vs Equi-probable
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Most textbooks suggest equi-probable is 
better, but this isn’t really true.

One advantage: E=n/k >> 5 for all bins, no 
need to adjust binning

Equi-probable bins can be found easily as 
quantiles of distribution or as quantiles of data
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Many textbook answers: 

D’Agostini and Stephens 2𝑛2/5

Sturge’s Rule 1 + 𝑙𝑜𝑔2𝑛 (used in a lot of software for histograms)

Mann and Wald 4[
2(𝑛+1)2

𝑐2
]1/5

And many more

But: really depends on case:
Example: 𝐻0: 𝑋~𝑈 0,1 𝑣𝑠 𝐻𝑎: 𝑋~𝐿𝑖𝑛𝑒𝑎𝑟
Optimal: k=2!

Formulas above were derived for the purpose of density estimation, but a 
number of bins that is good for density estimation (aka histogram) need not 
be good for gof testing.

My own studies show that a small number (no more than 10) independently 
of n is usually best.
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EDF: Empirical Distribution Function

𝐹 𝑥 → 𝐹 𝑥 uniformly (Glivenko-Cantelli lemma)
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Basic idea for test:

TS = 𝑑{ 𝐹, 𝐹}

d: distance measure on function space

Typical Example:

Ψ: weight function
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Theorem: (Probability Integral Transform)

Let X be a continuous random variable with 
distribution function F, then the random 
variable Y = F(X) has a uniform (0,1) 
distribution.

Consequence: test is distribution free, aka does 
not depend on F.

One table to rule them all!

Except this does not work if parameters are 
estimated from data!
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𝐾𝑆 = 𝑚𝑎𝑥 𝐹 𝑥 − 𝐹 𝑥 ; 𝑥 =

𝑚𝑎𝑥
𝑖

𝑛
− 𝐹 𝑋(𝑖) , 𝐹 𝑋(𝑖) −

𝑖 − 1

𝑛

Kolmogorov A (1933). "Sulla 
determinazione empirica di una 
legge di distribuzione". G. Ist. Ital. 
Attuari. 4: 83–91.

Smirnov N (1948). "Table for 
estimating the goodness of fit of 
empirical distributions". Annals of 
Mathematical Statistics. 19: 279–
281
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 Generate 1000 events from exponential 
distribution rate 1.0

 KS test whether data comes from an 
exponential distribution.

 Case 1: rate fixed at 1

 Case 2: rate estimated from data

 Repeat 1000 times, record p values
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Test with parameter estimation will be badly 
under-powered.
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 Estimate parameters from data (and you can 

use any method you like!) ↦ θ𝐷
 Find test statistic 𝑇𝐷 for data, using 𝐹(. |θ𝐷).

 Simulate new data set from 𝐹(. |θ𝐷), find its 

parameter estimates θ1, and its test statistic 

𝑇1 using 𝐹(. |θ1)

 Do this (say) 1000 times. 

 P-value = % {𝑇𝑖> 𝑇𝐷} (if large T is bad)

 Parametric bootstrap
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 Obvious issue with KS: uses only one x point (albeit 
the worst)

 Obvious alternative: 

Cramer-vonMises Test
Cramér, H. (1928). "On the Composition of Elementary 
Errors". Scandinavian Actuarial Journal. 1928 (1): 13–74. 
doi:10.1080/03461238.1928.10416862.
von Mises, R. E. (1928). Wahrscheinlichkeit, Statistik und 
Wahrheit. Julius Springer.
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Note that on the left both functions are 0, and on 
the right both are 1. So no difference!
Idea of Anderson-Darling: inflate differences there

𝐴2 = −𝑛 −

𝑖=1

𝑛
2𝑖 − 1

𝑛
[𝑙𝑜𝑔𝐹 𝑥𝑖 + (1 − 𝑙𝑜𝑔𝐹 𝑥𝑛+1−𝑖 )]

42



 𝑛 𝐹 𝑥 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛, 𝐹 𝑥

 𝑉𝑎𝑟 𝑛 𝐹 𝑥 = 𝑛𝐹 𝑥 1 − 𝐹 𝑥

 Variance stabilization

Anderson, T. W.; Darling, D. A. (1952). "Asymptotic theory of 
certain "goodness-of-fit" criteria based on stochastic 
processes". Annals of Mathematical Statistics. 23: 193–212.
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None of these allows estimation of parameters 
except in some special cases: 

𝐻0: 𝑋~𝑁𝑜𝑟𝑚𝑎𝑙
Hubert Lilliefors (1967), "On the Kolmogorov–
Smirnov test for normality with mean and variance 
unknown", Journal of the American Statistical 
Association, Vol. 62. pp. 399–402.

𝐻0: 𝑋~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙
Hubert Lilliefors (1969), "On the Kolmogorov–
Smirnov test for the exponential distribution with 
mean unknown", Journal of the American Statistical 
Association, Vol. 64 . pp. 387–389.

But then again, just find null distribution via Monte 
Carlo!
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Plot quantiles 
of F vs sample 
quantiles

If F is correct 
model, points 
form a straight 
line
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Again Probability Integral Transform:
𝑋~𝐹 → 𝐹(𝑋)~𝑈[0,1]

𝑈1, . . , 𝑈𝑛 𝑖𝑖𝑑 𝑈 0,1

Order Statistic              𝑈(1) <. . . < 𝑈(𝑛)

𝑈(𝑘)~𝐵𝑒𝑡𝑎 𝑘, 𝑛 − 𝑘 + 1

Find pointwise confidence intervals from quantiles of Beta 
distribution

Turn into simultaneous confidence band by adjusting 
nominal confidence level via MC.
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Sivan Aldor-Noima, Lawrence D. 
Brown, Andreas Buja , Robert A. 
Stine and Wolfgang Rolke, “The 
Power to See: A New Graphical 
Test of Normality”, The 
American Statistician (2013), 
Vol 67/4

Andreas Buja, Wolfgang Rolke  
“Calibration for Simultaneity: 
(Re) Sampling Methods for 
Simultaneous Inference with 
Applications to Function 
Estimation and Functional 
Data”, Technical Report, 
Wharton School of Business, 
Univ. of Pennsylvania

R routines: 
http://academic.uprm.edu/wrol
ke/research/publications.html
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Old idea – goes back to Neyman (1937) – but 
with some recent improvements.

Basic idea: embed density f in family of 
densities 𝑔𝑘 indexed by some parameter 
vector Θ = (θ1, . . , θ𝑘) which includes true density 
for some k and such that 

𝐻0: 𝑡𝑟𝑢𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑠 𝑓 ↔ 𝐻0: Θ = 0

48



ℎ𝑗 should be orthonormal family of 
functions, i.e.

optimal choice of ℎ𝑗 depends on f, so 
different tests for different null hypotheses.
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Typical choices for ℎ𝑗 : 

Legendre Polynomials, Fourier series, 

ℎ𝑗(x)= 2 cos 𝑗π𝑥 , Haar functions,  ….

Basics of the test:

Interesting feature: partial tests θ1, . . , θ𝑚 = 0 for 
m<k can give insight into HOW null is wrong.

50



Not so well known, but often have good power. 

Jin Zhang, “Powerful Goodness-of-Fit Tests Based on the Likelihood Ratio”, Journal of 
the Royal Statistical Society. Series B (Statistical Methodology), Vol. 64,No. 2 (2002), 
pp. 281-294

The distributions of all three test statistics need to be found via MC. 
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 Tests based on moments

 Test based on Wasserstein distance

 Tests specific for a distribution (Normal: 
more than 30 tests)

 A good place to start: “Comparing 
Distributions”, Olivier Thais, Springer
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𝐻0 ∶ 𝐹 =U[0,1] ; n=1000, α = 0.05

In all cases highest power ≈80-90%
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It’s a mess!
Any one method 
might have good 
power in one case 
and bad power in 
another.
Chi-square with 
large number of 
bins always bad.
Chis-square with 
low number of bins 
better but not 
great.
KS at least 
sometimes very 
bad.
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“Simultaneous Goodness-of-Fit Testing”, 

W. Rolke (2020): 21 such studies 
(https://arxiv.org/abs/2007.04727).

Most methods sometimes good, sometimes bad.

Chi-square and KS: never very good.

Chi-square with large number of bins (>>10): 
horrible!

AD and Zhang’s 𝑍𝐶 generally quite good.
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Do several tests!

If none of them reject the model, it can’t be 
that bad.

But: look-elsewhere-effect

Take a couple of looks effect?

↦ simultaneous inference
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Say we perform k tests, each at the α level, and 
assume model is good. Let 𝑇𝑖 be test i rejects 
null, then:

P(at least one test rejects null) =
1 − Prob(𝑇𝑖

𝑐; 𝑖 = 1, . . , 𝑘)

Easy if tests are independent: 

1 − Prob 𝑇𝑖
𝑐; 𝑖 = 1, . . , 𝑘 =

1 − ∏Prob 𝑇𝑖
𝑐 =

1 − ∏ 1 − α =1 − (1 − α)𝑘

↦ Bonferroni correction
58



But our tests are not independent, they all use 
the same data.

We can still find correction using simulation!

Example: 𝐻0: 𝑋~𝑈 0,1 , use 9 tests:
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 R package simgof (available on CRAN)
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In principle very useful, but:

Curse of Dimensionality (R. Bellman)

Example: 𝐻0: (𝑋1, . . , 𝑋𝑑)~𝑈[0,1]
𝑑

We want to do a  χ2 test and we want 10 bins in each dimension. 
What n do we need to get 𝐸 ≥ 5?

d=1: 𝐸 = Τ𝑛 10 ≅ 5 → 𝑛 ≅ 50
d=2: 𝐸 = Τ𝑛 102 ≅ 5 → 𝑛 ≅ 500

d=3: 𝐸 = Τ𝑛 103 ≅ 5 → 𝑛 ≅ 5000
…

d=10: 𝐸 = Τ𝑛 1010 ≅ 5 → 𝑛 ≅ 50 billion

Some other tests not so extreme, but all of them suffer to some 
degree from the curse.
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Some methods do this 
automatically.

Destroys any analytic 
null distribution.
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Under null 
hypothesis 
transformed 
spacings have 
uniform 
distributions.

Closely related to 
nearest-neighbors
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 Hyperspheres in 𝑅𝑑

 Bickel, P.J., Breiman. L (1983) Sums of 
functions of nearest neighbor 
distances, limit theorems and 
goodness of fit test, Ann. Prob. 11, 
185-214.

 Schilling. M (1983), Goodness of Fit 
Testing in Rm Based on the Weights 
Empirical Distribution of Certain 
Nearest Neighbor Statistics, Ann. ff 
Statistics 11, 1-12. 

 Schilling. M (1983), An infinite-
dimensional approximation to the 
nearest neighbor goodness-of-fit 
tests, Ann. Of Statistics 11, 13-24 

 Hall. P, (1986) On Powerful Distribution 
Tests Based on Sample Spacings, J. of 
Multivariate Analysis 19, 201-224.
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Ilya Narsky (2003), Estimation of Goodness-of-Fit in 
Multidimensional Analysis Using Distance to Nearest 
Neighbor, arXiv:physics/0306171

Presented at Phystat 2003 – SLAC

Based on Rosenblatt transform  and Monte Carlo.  

Rosenblatt transform imposes artificial order on 
variables. In d dimensions there are d! ways to go.
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Analytic derivation of null distribution also based 
on Rosenblatt transform, same issue of order.

These days test statistic can be found directly, but
needs a lot of calculations. 

KS: Sample size n↦ 𝑛2/4 function evaluations

Simple Idea: Just look at data points ↦ fKS

Not as powerful as KS, but not bad either, and 
much faster.

Anderson-Darling can also be generalized but 
requires numerical calculation of many integrals.
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 Lopes.RHC, Reid. I and Hobson. PR (2007) The two-dimensional 
Kolmogorov-Smirnov test. Proc. XI Int. Workshop on Advanced 
Computing and Analysis Techniques in Physics Research April 23-
27.

 Fasano, G and Franceschini. A (1987) A multidimensional version of 
the Kolmogorov-Smirnov test, Mon. Not R ast. Soc 225, 155-170

 Lopes. RHC et al (2008), Computationally efficient algorithms for the 
two-dimensional Kolmogorov–Smirnov test, J. Phys. Conf. Ser, 119

 Peacock. JA (1983) Two-dimensional goodness-of-fit testing in 
astronomy, Mon. Not. R. Astron. Soc. 202 615-627
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Characteristic Function of a Random Vector

empirical characteristic function

𝜙 𝑡1, . . , 𝑡𝑘 =
1

𝑛


𝑖=1

𝑛

𝑒 𝑖 𝑡1𝑥1+..+𝑖 𝑡𝑘𝑥𝑘

𝑇𝑛 ≈ 𝜙 𝑡1, . . , 𝑡𝑘 − 𝜙 𝑡1, . . , 𝑡𝑘
2

Problem: choice of 𝑡1, . . , 𝑡𝑘 crucial for power, not obvious

Yanqin Fan, (1997), Goodness-of-Fit Tests for a Multivariate Distribution by the 
Empirical Characteristic Function, Journal of Multivariate Analysis, 62, 36-63

74

𝜙 𝑡1, . . , 𝑡𝑘 = 𝔼 𝑒 𝑖 𝑡1𝑋1+..+𝑡𝑘𝑋𝑘



Data: 𝒙1, . . , 𝒙𝑛
Data simulated from F : 𝒕1, . . , 𝒕𝑚

𝜑 =
1

𝑛2


𝑖<𝑗

𝑅(∥ 𝒙𝑖 − 𝒙𝑗 ∥) −
1

𝑛𝑚


𝑖,𝑗

𝑅 ∥ 𝒕𝑖 − 𝒙𝑗 ∥

R correlation function:

𝑅𝑘 𝑟 =
1

𝑟𝑘
𝑅𝑙 𝑟 = − log 𝑟

𝑅𝑠 𝑟 = exp(−𝑟2/(2𝑠2)
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In principle easy, but:

Choice of k?

Same basis functions in different 
dimensions?

For good power basis functions need to 
“match” F.
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General Comments:

GOF tests beyond 2 or 3 dimensions unlikely to 
be very powerful.

At the very least will require gigantic data sets 
to get reasonable power.

No easy to use computer programs 

Still a wide-open problem!
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1) Model Selection

2) Data is truncated

3) Sample size is random

4) Data is discrete

5) Data is binned

6) MC vs Sample
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Note above: no alternative hypothesis 𝐻1

Different problem:

𝐻0: 𝐹 = 𝑓𝑙𝑎𝑡 vs 𝐻0: 𝐹 = 𝑙𝑖𝑛𝑒𝑎𝑟
→ model selection

Usually better tests: likelihood ratio test, F tests, 
BIC etc.

Easy to confuse: all GOF papers  do power studies, 
those need specific alternative.
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Say we test 

𝐻0: 𝐹 = 𝑓𝑙𝑎𝑡 vs 𝐻0: 𝐹 = 𝑙𝑖𝑛𝑒𝑎𝑟

and we reject the null, but only because we have 1 
million events.

Remember, all models are wrong!

Maybe true model is proportional to 𝑥1.5!

How does choice effect final result? 

Maybe better to use both flat and linear and find out

→ sensitivity analysis
→ systematic errors 
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Data in High Energy Physics is always truncated 
to a finite interval.

Care needs to be taken with normalization 

(aka                −∞
∞

𝑓 𝑥 𝑑𝑥 = 1 )

Statisticians (and their methods) usually will 
assume this is done automatically and at all 
times.
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In HEP experiments sample size is not fixed a-
priori but is a consequence of the run time

n~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ)

If n is fixed: 𝑁1, . . , 𝑁𝑘 ~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝1, . . , 𝑝𝑘)

But if n is Poisson
𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ𝑝𝑖) 𝑎𝑛𝑑 𝑁1, . . , 𝑁𝑘 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡!

(Theory of Marked Poisson processes)

Consequence: 𝑋2~χ2(𝑘 − 𝑚) (not k-m-1)

Not an issue if null distribution is found via MC
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Does my data come from a Poisson 
distribution?

Chi-square works just as before (but again, 
don’t use to many classes)

EDF based tests (KS, AD, Zhang etc) all still 
work but require different formulas and p-
values have to be found via mini MC.
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Data in HEP is often already binned for various 
reasons, for example detector resolution.

Note: binned data ≠ discrete data

Still need to consider rebinning for chi square tests.

How about tests that require continuous data?

𝐾𝑆 = 𝑚𝑎𝑥
𝑖

𝑛
− 𝐹 𝑋(𝑖) , 𝐹 𝑋(𝑖) −

𝑖 − 1

𝑛

But we only know 𝑏𝑖 < 𝑋(𝑖) < 𝑏𝑖+1
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Obvious answer: 𝑝𝑖 =
𝑏𝑖+𝑏𝑖+1

2
midpoints, repeat 

each according to bin counts, run continuous 
test.

Simulation: generate 1000 Exp(1), bin into 50 
equal sized bins, do test as above

Need to use simulation to find p values
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Other ways to go:

spread out 𝑛𝑖 points in (𝑏𝑖 , 𝑏𝑖+1) uniformly.

spread out 𝑛𝑖 points in (𝑏𝑖 , 𝑏𝑖+1) according to F (can 
be computer intensive).

Discretize distribution function: 

𝑝𝑖 = 𝐹 𝑏𝑖+1 − 𝐹 𝑏𝑖

Now run discrete version of test (if available)

What’s best? Not clear …
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Today we often don’t have F. Note that as long as 
we can at least calculate values from F (machine 
learning etc) that’s ok. But sometimes we can’t 
even do that.

We can however simulate from F (Monte Carlo)

Question now: does our MC agree with the data, 
that is, where they generated by the same 
(unknown) distribution?

↦ Two-Sample Problem
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𝐻0: 𝐹𝑥 = 𝐹𝑦

Note: not 𝐹𝑥 = 𝐹𝑦 = 𝐹, so no probability 
distribution specified, so also no parameter 
estimation.

→ in many ways an easier problem than GOF.

Classic version: two-sample t test
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Say we have k classes/bins. x is the counts of x 
data, y counts of y data, then 
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KS and AD tests:

where 𝑐𝑖 is the number of x values less or equal 
to the combined data set.

Similarly formulas for Zhang’s tests.

But no analytic formulas for p values for those.



x=(0.1, 0.4, 0.8, 0.9, 1.0, 1.1)
y=(0, 0.2, 0.6, 1.0)
xy=(0.1, 0.4, 0.8, 0.9, 1.0, 1.1, 0, 0.2, 0.6, 1.0)
P(xy) = 
(0.6, 0.2, 0.8, 1.0, 0.9, 0.4, 0.0, 0.1, 1.0, 1.1)

P(x) = (0.6, 0.2, 0.8, 1.0, 0.9, 0.4)
P(y) = (0.0, 0.1, 1.0, 1.1)

Under the null hypothesis these are just as good a 
data as original. Generate (say) 1000 such data 
sets and find values of test statistics. Compare to 
real data.

Not a new idea: Fisher (1935) “Design of        
Experiments”
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x normal(0,1)

y normal(μ,1)

Sample size 100 each

t test is likelihood ratio 
test, so (near) optimal.

Permutation test just as 
powerful, without any 
assumptions!
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Application to our two-sample problem 

Example (Shift): 

Data set 1: 500 events from standard normal

Data set 2: 500 events from normal with other 
mean.
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Example (Stretch)

Data set 1: 500 events from standard normal

Data set 2: 500 events from normal with other 
standard deviation.
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Example: 
Data set 1: 10000 events from exponential rate 1
Data set 2: 20000 events from normal gamma rate 1, shape 
Both data sets are binned into 100 equal probability bins



Often when comparing MC with data, it is 
possible to generate as many MC events as we 
want, whereas the size of the data set is fixed. 

So if the data set has n events, how large 
should we pick m, the number of MC events?

Example: 
Data set 1: 500 events from standard normal
Data set 2: 500r events from normal with mean 
0.2
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Not much gain 
in power 
beyond five-
fold
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Root: 

AD and KS test implemented in 

the ROT:Math::GoFTest class, uses theoretical 

distributions for p values. 

For binned data the tests are available in the 

histogram class, 

as TH1::AndersonDarling and TH1::KolmogorovTe
st. They assume  points at bin centers. 

P values can also be found via mini MC.
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T.

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Froot.cern%2Fdoc%2Fmaster%2FclassROOT_1_1Math_1_1GoFTest.html&data=04%7C01%7Cwolfgang.rolke%40upr.edu%7Cd319089d937e4b8d090708da07605058%7C0dfa5dc0036f461599e494af822f2b84%7C0%7C0%7C637830407493223458%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=MFBEL%2BTbWbTHkbNXXxtyzSMbVvsAT8MHKxL%2F%2Br98VPE%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Froot.cern.ch%2Fdoc%2Fmaster%2FclassTH1.html%23aa6b386786876dc304d73ab6b2606d4f6&data=04%7C01%7Cwolfgang.rolke%40upr.edu%7Cd319089d937e4b8d090708da07605058%7C0dfa5dc0036f461599e494af822f2b84%7C0%7C0%7C637830407493379700%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=11qDAn0s0t9jj4LxvPGyqJ2xzDspD20iUOT%2B%2FPgAtgE%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Froot.cern.ch%2Fdoc%2Fmaster%2FclassTH1.html%23aeadcf087afe6ba203bcde124cfabbee4&data=04%7C01%7Cwolfgang.rolke%40upr.edu%7Cd319089d937e4b8d090708da07605058%7C0dfa5dc0036f461599e494af822f2b84%7C0%7C0%7C637830407493379700%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=6fk1475Nnwe2wkmVUTq6UdKY6jN3RklEGEo1QE%2Fk8So%3D&reserved=0


combine:  

KS, AD and Baker-Cousins. For binned data 
only, parameters are estimated via maximum 
likelihood and p values found via mini MC.

R: everything …
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 GOF testing should be part of (most) statistical 
analysis.

 Any one test can have low power, so do several.
 Chi-square with large number of bins has very 

low power.
 Tests for multi-dimensional distributions are not 

great and likely have low power for much more 
than two dimensions.

 Related problems such as model selection and 
two sample require their own methods.

 THANKS!
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