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Introduction
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Figure from Rasmussen and Williams (2006)

Gaussian processes are a versatile class of statistical models for random

functions.
They enable learning from data in situations involving random or unknown

functions.
Gaussian processes are popular because 1) they provide a plausible model

for various real-world phenomena, 2) they provide useful inferences, and 3)
they are quite easy to work with.
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Multivariate Gaussian distribution

A random vector y € R" has an n-variate Gaussian distribution, denoted
by y ~ N(m,X), if its pdf is given by

—¥ex —1 -m)'EYy-m
ploIm. ) = — e (5 = m) "2y~ m))

This is parameterized by the mean vector m and the symmetric and
positive definite covariance matrix X so that

Ely]=m; foralli=1,...,n
Covlyi,yjl =%; foralli,j=1,....n
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Multivariate Gaussian distribution

Multivariate Gaussian random vectors have a number of nice properties.
For example, consider the decomposition
=) m=[m] == 5
Then the marginal distribution of y; is
y1 ~ N(my,Xq;)
and the conditional distribution of y; given y» is
(v1ly2) ~ N(my + 212355 (y2 — M), T11 — 1255, 1)

By rearranging the elements of y, we can have any subset of elements in
the component y; and the remaining elements in the component y,. In
other words:
@ Any subset of elements of y has a multivariate Gaussian distribution
@ Any subset of elements of y conditioned on the rest has a

multivariate Gaussian distribution
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Gaussian processes: Definition

Now, imagine that n is very large. We then have a large collection of
random variables

{)/17)/27 v 7yn71)yn} = {yi}?:lv

indexed by the discrete index i/, whose joint behavior is described by the
multivariate Gaussian distribution.

A Gaussian process is an infinite-dimensional generalization of this to a
collection of random variables indexed on a continuum.

Definition
A Gaussian process is a random function f(x) whose values
f(x1),...,f(xn) at any finite set of inputs xi, ..., x, follow a multivariate

Gaussian distribution.
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Gaussian processes: Definition

Definition
A Gaussian process is a random function f(x) whose values f(x1),...,f(x,) at
any finite set of inputs x, ..., X, follow a multivariate Gaussian distribution.

A Gaussian process is parameterized by the mean function m(x) and the
covariance function k(xy, xz) so that
m(x) = E[f(x)], forall x
k(x1,x2) = Cov[f(x1), f(x2)], for all xq, xo.

We then denote f ~ GP(m(x), k(x1, x2)).

The covariance function k(xi, x2) has to be such that the covariance matrix of
[f(x1),...,f(x,)]" for any inputs x;, i = 1,..., n, is positive definite.

Functions with this property are called positive definite. There are various
well-known families of positive definite functions, but it's good to keep in mind
that not all bivariate functions are valid covariance functions.
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Gaussian processes: Inference

Let f ~ GP(m(x), k(x1,x2)) and assume that we get to observe

1= f(Xl),yz = f(XQ), S 7 f(X,,).

What can we then say about y, = f(x,) at some unobserved location x,.?
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Gaussian processes: Inference

Let f ~ GP(m(x), k(x1,x2)) and assume that we get to observe
y1=f(x1),y2 = f(x2),....yn = f(xn).

What can we then say about y, = f(x,) at some unobserved location x,.?

Since y, is a random quantity, statisticians call this prediction of y, (as
opposed to estimation of a fixed parameter).

Denote y, = [y1,...,ya]". Then, by definition:

2 m(x.)
[y*] = )/-1 ~ N(m,X), where m= m(_)(l) = [m(x*)]
Yn : : my
Yn m(x,)
and
k(xe, %)  k(xe,x1) -+ k(X4, X5)
> = e B A [k(x*,x*) kﬂ
| S
k(xn, xs)  k(xp,x1) -+ k(xn, Xn)
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Gaussian processes: Inference

Then, by the properties of the multivariate Gaussian distribution, the
conditional distribution of y, given y, is

(Valyn) ~ N(m(x.) + k*TKJl(yn —mp), (X, Xi) — k;rKnilk*)

Since we are trying to predict y. given y,, this is also known as the
predictive distribution of y,. We can directly extract from this the
predictive mean

Ve = Elyilyn] = m(x,) + k;rKn_l(yn —m,)
and the predictive variance
62 = Var[y.|yn] = k(xs, x.) — k] K, k..

We then predict y, using y.. A standard result from statistical learning
theory says that this is the mean squared error optimal predictor of y,.

The (1 — ) predictive uncertainty is given by [§. — 214,28+, Jx + Z1_a204],

which has correct coverage assuming that the model is correct.
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Gaussian processes: Inference

As a result, we conclude that y, should be predicted using
e = m(x.) + k] Ky (yn — mp)

and the uncertainty of the prediction at level (1 — «) is given by
[V = Z1—a/20%; I + Z1_a204]-

This has various names depending on the context, including kriging

(spatial statistics), objective mapping (oceanography) or optimal
interpolation (atmospheric science).
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Gaussian processes: Inference

Notice also that we can repeat the same calculation for other x,'s to
obtain pointwise predictions of f(x) on a fine grid, for example.

We can also repeat the calculation for the vector

[y1*7 e 7yp*7y17 e 7.yn]T = [f(xl*)a R f(Xp*), f(xl)7 tet f(xn)]T

to obtain the predictive distribution of yi4,..., yp« given y1,...,y,, which
also provides us the predictive covariance between different locations x;,.

Key observation: Because finite evaluations of a Gaussian process follow
a multivariate Gaussian distribution, we immediately know how to make a
finite number of predictions given a finite number of observations.
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Gaussian process regression

In practice, we do not necessarily want to force the function f to go
through the observations y1,..., yp.

Therefore, the following Gaussian process regression model is commonly
employed:
yi = f(xi) + i,

iid .
where f ~ GP(m(x), k(x1,x2)) and €; "= N(0,02). The extra term ¢; is
called the nugget effect and corresponds to measurement error,
unexplained variation or microscale variation, depending on the context.

One can then be interested in predicting either f, =f(x.) or y.=f(x.)+e.

The predictive distribution in the first case is

(£lya) ~ N(m(x)+kT (Knt0? 1) (ya—mn), k(x., x.) kT (Ko+021) k)

The latter case is otherwise the same but the predictive variance is
Var[y.|y.] = Var[f|ya] + 0% = k(x., x.)+0>—k] (K,+021) "1k,
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Gaussian process modeling

A Gaussian process f ~ GP(m(x), k(x1, x2)) is parameterized by the mean
function m(x) and the covariance function k(xg, x2)

In order to model data using a GP, one therefore needs to decide how to
choose these functions.

A significant portion of GP literature revolves around this question.

There is some ambiguity with regards to what portion of the data should
be explained using m(x) and what portion using k(x1, x2), especially if
there is only a single realization of f

@ "One person's mean structure is another person’s covariance structure”

Some authors claim that one can simply set m(x) = 0 without loss of
generality, but it's not quite that simple

In practice, we tend to use certain parametric classes of functions for both:

m(x) = m(x; B), k(x1,x2) = k(x1,x2;6)
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Choice of the mean function

The mean function m(x) should be flexible enough to model the average
shape of the random function f(x), but also rigid enough to not fit the
stochastic high-frequency fluctuations that might be present in the data

It might sound like it is difficult to strike a balance here, but luckily the
final predictions are usually quite robust against modest misspecification of
the mean

Common choices for m(x; 3):
e Linear in x and 3: m(x; B8) = x'3
o Splines (especially in 1D): m(x; 3) = >_%_, BiBi(x), where Bi(-) are
B-spline basis functions

@ Nonlinear (in both x and 3) regression functions (e.g., neural nets)
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Choice of the covariance function

Remember k(x1, x2) = Cov[f(x1), f(x2)].

Which bivariate function k(-,-) to use? (Remember that k(-,) needs to
be positive definite.)

A common assumption is to say that k(xi, x2) is stationary (i.e.,
translation invariant): k(x1,x2) = k(x1 — x2)

Furthermore, it is common to assume isotropy
k(x1,%2) = k(|x1 — x2[))
or geometric anisotropy

k(x1,x2) = k(||x1 — x2|a),

where ||x1 — x2||a = \/(xl—x2)TA (x1—x2) for a positive definite matrix A
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Choice of the covariance function

Let's focus on the case with geometric anisotropy. Denote s = ||x; — x2|| a-
At this point, we need to choose the matrix A and the function k(s).

Here A controls the length scales and orientation of the dependence in
f(x) over x.

The function k(s) controls the remaining properties of the random field
f(x), such as smoothness, periodicity, etc.
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Choice of the covariance function

Popular models for k(s) include:

e Exponential: k(s) = ¢pexp(—s), ¢ >0
e f(x) continuous but not difFerentiabIe
@ Squared exponential: k(s) = ¢pexp(—s?), ¢ >0
e f(x) infinitely differentiable
e Matérn: k(s) = QFI(—;;S"KV(S), ¢ >0, where v > 0 is a smoothness
parameter and K, is a modified Bessel function
o f(x) k times differentiable if and only if v > k
o Gives exponential for v = 5 1 and squared exponential fo

o Has simplified form when v is half integer, i.e., v = 1

or

3

272

For example, if we pick A = diag(1/62,...,1/6%) and let k(s
exponential, then we have the following covariance model

k(Xl,X2; ¢7 017 . 'agd)

2 2 2
B B X11—X21 X12—X22 o X1d—X2d
“Z’exp< \/< ) () e (U, >>

parameterized by ¢,01,...,04 >0
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Parameter estimation

Let 8 denote the vector of covariance parameters that affect the data-data
covariance K, so that K,(6)

Then the unknown parameters of the model are (3,8, c2) and we wish to
learn these parameters using the observed data y,

Various techniques for estimating these parameters exist, but the most
common approach is to use maximum likelihood.

Since y, follows a multivariate Gaussian, the log-likelihood of (3,8, c?) is
U(B,8,0) = log p(ya|B, 6, %)
= —% {n log(27) + log det (K,,(0) + 1)

+ (v = ma(B))T (Ka(6) + 021) (v — mn(B))]

The estimates (3, 8, 52) are those values that maximize (3, 0, 52)

For linear mean functions, 3 can be solved in closed-form (for given
(0,0?)), but to solve (6, c2) one needs to typically use numerical

optimization
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Gaussian processes in particle physics

Some uses of Gaussian processes in HEP:

@ Bayesian prior for an unknown function f
Modeling of background shapes
Bayesian optimization

o
o
e Emulators/surrogates for computationally intensive simulations
o
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Gaussian processes and unfolding

1

Unfolding with Gaussian Processes

Adam Bozson®, Glen Cowan, Francesco Spand

Department of Physics
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

Abstract

A method to perform unfolding with Gaussian processes (GPs) is presented. Using Bayesian regression, we define an
estimator for the underlying truth distribution as the mode of the posterior. We show that in the case where the bin
contents are distributed approximately according to a Gaussian, this estimator is equivalent to the mean function of
a GP conditioned on the maximum likelihood estimator. Regularisation is introduced the kernel function of the
GP, which has a natural interpretation as the covariance of the underlying distribution. This novel approach allows for
the regularisation to be informed by prior knowledge of the underlying distribution. and for it to be varied along the
spectrum. In addition, the full statistical covariance matrix for the estimator is obtained as part of the result. The
method is applied to two example: double-peaked himodal distribution and a falling spectrum

Keywords: unfolding, Gaussian process

1. Introduction on the maximum likelihood (ML) method, and the need
for regularisation. In a Bayesian setting, the likelihood

Experimental measurements are distorted and biased  i5 aphanced by prior information so that the ML solu-

by detector effects, due to limitations of the measuring in- 4oy, is replaced by the mode of the posterior distribution
strument and procedures. The need to infer the underlying  See. 4 connects the maximum a posteriori (MAP) estim-
distribution using the measured data is shared by va

ator to the solntion of a resression nrablem which eondis

[arXiv:1811.01242)]
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Gaussian processes for background modeling

Modeling Smooth Backgrounds & Generic Localized Signals with Gaussian Processes

Meghan Frate,! Kyle Cranmer,? Saarik Kalia,* Alexander Vandenberg-Rodes,* and Daniel Whiteson!

! Department of Physics and Astronomy, University of California. Trvine, CA 92697
2 Department of Physics and Astronomy, New York University, New York, NY 10003
‘Department of Physics, MIT, Boston, MA
4 Obsidian Security Inc., Newport Beach, CA 92660

We desc

be a procedure for constructing a model of a smooth data spectrum

g Gaussian

processes rather than the historical parametric description. This approach considers a fuller space

of possible functions, is
standing of the underlying ph
the background to searches for

robust at increasing Inminosity, and allows us to incorporate our under-
We demonstrate the application of t
jet resonances at the Large Hadron Collider and describe how the

approach to modeling

approach can be used in the search for generic localized signals.

PACS numbers:

INTRODUCTION

The search for new particles and interactions is a cen-
tral focus of the research program of the Large Hadron
Collider (LHC). Typically, such a search is cast in the
language of a hypothesis test of a background model pre-
dicted by the standard model of particle physics. In
some cases, the alternative hypothesis is specified by
a particular theory or class of theories, in which case
a practical task of the experimentalist to identify

Gaussian Processes

describe the background is central to the new particle
search, yet funetional forms derived from first principles
are almost never available. Instead, the typical approach
is to select an ad-hoc parametric function with little-to-
no grounding in the physics involved, but which fits rea-
sonably well in collider data and simulated samples. As
the luminosity of the collected datasets grow, however,
the discrepancies between the ad-hoe model and the true
physical process are revealed. As the rigid form and lim-
ited flexibility of the parametric functions fail to accom-
maodate the ohserved sneetra. eontinnal addition of new

[arXiv:1709.05681]
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Bayesian optimization in HEP

Event generator tuning using Bayesian optimization

Philip llten, Mike Williams, and Yunjie Yang

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139

ABSTRACT: Monte Carlo event generators contain a large number of parameters that must be
determined by comparing the output of the generator with experimental data. Generating enough
events with a fixed set of parameter values to enable making such a comparison is extremely CPU
intensive, which prohibits performing a simple brute-force grid-based tuning of the parameters.
Bayesian optimization is a powerful method designed for such black-box tuning applications. In
this article, we show that Monte Carlo event generator parameters can be accurately obtained using
Bayesian optimization and minimal expert-level physics knowledge. A tune of the PYTHIA 8 event
generator using e events, where 20 parameters are optimized, can be run on a modern laptop
in just two days. Combining the Bayesian optimization approach with expert knowledge should
enable producing better tunes in the future, by making it faster and easier to study discrepancies
between Monte Carlo and experimental data.

[arXiv:1610.08328]

Mikael Kuusela (CM Gaussian Processes March 30,




Surrogate models using Gaussian processes

CTPU-16-35

IFT-UAM/CSIC-16-116

Accelerating the BSM interpretation of LHC data with machine learning

sianfranco Bertone,! Mare Peter Deisenroth,? Jong Soo Kim
Sebastian Liem.! Roberto Ruiz de Austri, and Max Welling®

'GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
®Department of Computing, Imperial College London,
180 Queen’s Gate, SW7 2AZ London, United Kingdom
3Center for Theoretical Physics of the Universe,
Institute for Basic Science (IBS), Dacjeon, 34051, Korea and
Iustituto de Fisica Tedrica UAM/CSIC, Madrid, Spain
*Instituto de Fisica Corpuseular IFIC-UV/CSIC, Valencia, Spain
* Informatics Institute, University of Amsterdam,
Science Park 90§, 1098 XH Amsterdam, Netheriands
(Dated: November 10, 2016)

The interpretation of Large Hadron Collider (LHC) data in the framework of Beyond the Standard
Model (BSM) theories is hampered by the need to run computationally expensive event generators
and detector simulators. Performing statistically convergent sca
is consequently challenging. and in practice unfeasible for ver.
present here a new e learning method that accelerates the interpretation of LHC data, by
learning the relationship between BSM theory parameters and data. As a proof-of-concept, we
demonstrate that this technique aceurately predicts natural SUSY signal events in two signal regions
at the High Luminosity orders of magnitude faster than standard techniques. The
new approach makes dly and accurately reconstruct the theory parameters of
complex BSM theories should an exceas in the daa be disovered at the LHC

Introduction: A vast effort is cnrrently in progress rapidly and accurately prediet signal region efficiencies.
to discover phys Beyond the Standard Model (BSM) Gaussian processes: The number of events N; in SR
at the Large Hadron Collider (LHC), motivated in part i can be written as N; = Loe,, where L is the integrated
by the possible connection between new particles at the luminesity, o the production cross-section of the relevant
weak seale and the dark matter problem in astrophysics  process(es), and ¢; € [0,1] is the SR efficiency (which
and cosmology [1-3]. The absence of clear evidence for is in turn the product of the detector efficiency times
REM nhysies in enerent THE data has hoen internretod  the aceentanes io the feaction of svents that nasees

[arXiv:1611.02704]
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Additional reading

The following textbooks are good starting points for learning more:

@ C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006

@ M.L. Stein, Interpolation of spatial data: Some theory for kriging,
Springer, 1999

@ N.A.C. Cressie, Statistics for spatial data, Revised edition, John Wiley
& Sons, 1993

e C.M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006

@ J. Mockus, Bayesian Approach to Global Optimization: Theory and
Applications, Kluwer, 1989
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Gaussian processes in Earth science

In Earth sciences, the following Gaussian process model is often used for
interpolating atmospheric or oceanographic observations:

Yij = fi(Xat,ij> Xion,ijs tij) + €ijs
£ %S GP(m, k), i) " N(0,0?),

where

@ y;; is some observed quantity (for example, temperature, humidity,
CO; concentration,...)

@ i=1,...,n refers to years and j = 1,..., m; to observations in the
ith year

@ Xiat,ij» Xlon,ij and t;; are the latitude, longitude and time of y; ;

Key point: This is a fully frequentist model. It is quite sensible to model
the year-to-year variations in these fields as a Gaussian process.
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Upper ocean heat content anomalies

(c) 02/2013 (d) 02/2015

Monthly ocean heat content anomalies interpolated from in situ
oceanographic float data using locally stationary Gaussian processes
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Gaussian processes in cosmology

Cosmic microwave background temperature fluctuations from WMAP

Standard cosmological models imply that CMB is a Gaussian random field
(i.e., a Gaussian process with 2 input dimensions)

Observational evidence of non-Gaussianity would have important
implications for theories of the early Universe

Key point: Here we have a function that by physical arguments is known
to be a Gaussian process. Hypothetically one can imagine observing
multiple realizations of this random function (in practice there is of course
just a single realization).
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