
2nd Pan-European Advanced School on Statistics in High Energy Physics

 

Rahul Balasubramanian

✦ EFT Lagrangian Morphing 

✦ Modelling physics distributions in the framework of  
an Effective Field Theory (EFT)

2nd Pan-European Advanced School on Statistics in High Energy Physics

30th  March 2021 

✦ Rahul Balasubramanian, Carsten Burgard, Wouter Verkerke



2nd Pan-European Advanced School on Statistics in High Energy Physics

 

Rahul Balasubramanian2

✦ Outline 

Effective field theory 
Motivation for EFT approach at the Large Hadron Collider
Effective Lagrangian 
Observable dependence on EFT parameters 

Effective Lagrangian Morphing 
Morphing physics distributions within EFT
Interface between data and theory

Implementation within ROOT 
Modelling EFT observables with RooLagrangianMorphFunc
Examples based on 2 and 3 EFT parameters 

}About the theoretical model

} Describing data observables  

within model



2nd Pan-European Advanced School on Statistics in High Energy Physics

 

Rahul Balasubramanian3

✦ References 

Effective field theory 
Introduction to Effective Field Theories, Manohar, Les Houches Lect. Notes 108(2020)

The Standard Model as an effective field theory, Brivio, Trott, Physics Reports, Volume 793, 2019

Effective Lagrangian Morphing 
A morphing technique for signal modelling in a multidimensional space of coupling parameters, The ATLAS 

collaboration,  ATL-PHYS-PUB-2015-047

Effective Lagrangian Morphing, Balasubramanian, Burgard, Verkerke, arXiv:2202.13612

Morphing within ROOT 
RooFit tutorials

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%201804.05863
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%201706.08945
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2015-047/
https://arxiv.org/abs/2202.13612
https://root.cern.ch/doc/master/group__tutorial__roofit.html


2nd Pan-European Advanced School on Statistics in High Energy Physics

 

Rahul Balasubramanian4

✦ Outline 

Effective field theory 
Motivation for EFT approach at the Large Hadron Collider
Effective Lagrangian 
Observable dependence on EFT parameters 

Effective Lagrangian Morphing 
Morphing physics distributions within EFT
Interface between data and theory

Implementation within ROOT 
Modelling EFT observables with RooLagrangianMorphFunc
Examples based on 2 and 3 EFT parameters 

}About the theoretical model



2nd Pan-European Advanced School on Statistics in High Energy Physics

 

Rahul Balasubramanian5

✦ Effective field theory 

 decayβ W mediated

p ≪ mW ∝
1

p2 − m2
W

∝
1

m2
W

Effective theories appear everywhere in physics ! 

Based on the principle of separation of scale, physics at a given energy 
scales decouples from physics at another scale except for a few parameters

       Ex: Fermi theory sufficient to describe  decays,  no description of electroweak  
            Interactions required !

β
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✦ Two types of EFT

               Top-down
Theory at higher-energy scale known,  
can simplify the picture to describe  
phenomena at lower energy scales. 
 
ex.  
top quark (Mt = 173 GeV) is much  
heavier for QCD processes where the  
interactions are at the O(few) GeV scale

          Bottom-up
Valid theory valid theory known  
at a current energy scale,  
however no description of  
physics at higher scales. 
Current theory can be viewed as 
a low-energy effective approximation 
of a more fundamental theory  
ex.  
Fermi theory is the low energy 
approximation of the Standard Model

known

low 
energy 

EFT
of known 

theory 

unknown

known

low 
energy 

EFT
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✦ Standard Model 

The Standard Model (SM) is a remarkably successful  

theory 

It is being studied extensively at the LHC  
and other experiments around the world  

No direct evidence for new members of the 
family 

However lacks explanation for many phenomena ! 
dark matter, matter-antimatter asymmetry, etc..
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Production of SM particles
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The Standard Model predictions 
agree well with measurements 
at the LHC 

The energy scale probed by 
these measurements typically 
around vev (246 GeV) 

Important to measure differential 
distributions to separate out  
regions with higher energy reach !   

✦ Standard Model - highly predictive !
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✦ Direct searches for new particles

Direct searches probe  
resonant production or  
non-resonant effects  
direct production of  
new particles  

Usually based on a particular 
models with unique signature(s) 

Mass reach saturated at 1-10 TeV 
M
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 excluded masses for individual models
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✦ Looking for indirect signatures
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✦ Looking for indirect signatures
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Effective interaction at low energy
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SMEFT allows to probe BSM physics at energies much higher than direct energy reach 
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✦ EFT Lagrangian

ℒ = ℒSM +
1
Λ

ℒ(d=5) +
1

Λ2
ℒ(d=6) + ⋅ ⋅ ⋅ +

1
ΛD−4

ℒ(d=D) + ⋅ ⋅ ⋅

EFT Lagrangian written out as an expansion in terms  of   where          1/Λ Λ ≫ E, vev

 contains no information of , accessible by higher order terms which are given as sum of 
all possible operators  where,
ℒSM Λ

{𝒪d
i }

ℒ(d) = ∑
i

ci𝒪i

 are wilson coefficients are correspond to free parameters of the model
 all possible terms with known fields that respect allowed symmetries  
 Lorentz invariance, Gauge symmetry 

{ci}
𝒪i

→

 acts as a basis to describe all allowed deformation to the Standard Model  
 
{𝒪i}

𝒪(3)
Hq = (H†iDμH)(ūpγμur)

c(3)
Hq
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✦ Observables in EFT38 3.5. Experimental status of Higgs boson physics
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Figure 3.9: Simulated modifications of the Higgs pT spectrum in WH production
due to non-SM values of ŸW (left) and c(3)

Hq (right).

3.5 Experimental status of Higgs boson physics

The discovery of a narrow resonance at ≥ 125 GeV by the ATLAS and CMS
collaborations [1, 70] marked the starting point of an extensive research programme
into the detailed properties of the new particle. Ever since then, a detailed
comparison of the particle’s measured properties with the predictions from the
Higgs boson of the SM is of paramount interest. This section provides an overview
of the experimental status of Higgs boson physics at the time of writing, which
allows to place the measurements that are presented in this thesis into a wider
context. The experimental results focus on measurements performed by the ATLAS
collaboration. So far, no significant deviations from the predictions of a SM Higgs
boson are observed.

Spin and CP structure Analyses of the spin parity nature of the new particle
exclude hypotheses other than the SM one of a scalar CP-even boson beyond 99.9%
CL [71], leading to the particle being commonly referred to as the Higgs boson.
Although a pure CP-odd eigenstate has been rules out, pseudo-scalar admixtures
of CP-even and CP-odd eigenstates are still within experimental bounds [72–74].
So far, no sign of CP violation in the Higgs sector has been found.

Decay to bosons The two decay channels, H æ ““ and H æ ZZú
æ 4¸,

have driven the sensitivity for the Higgs boson discovery. Electrons, muons and
photons are precisely reconstructed by the ATLAS detector, which makes these two
measurement channels powerful tools to investigate Higgs boson properties, despite
the relatively low final state branching ratios of 0.23% and 0.013%, respectively.
The Higgs boson signal in both channels has been observed without any reasonable

B. Moser’s thesis 

dσ
dpT

We want to model the dependence of observable  
distribution on the parameters of the model { }, ex. 

Distribution predictions can be generated at choice of  
parameters values using monte-carlo simulations

However expensive to construct a fine grid of  
simulations, grid simulations scales exponential with number  
exponentially with number of parameters involved  

 Prohibitive ! 

Crucial to construct likelihood function in terms of EFT parameters,

ci

→

L(data| , Nuisance parameters)⃗c
[See Glen Cowan’s talk on likelihood based combinations]

https://cds.cern.ch/record/2803776
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✦ From Lagrangian to observables

Given the Lagrangian, can write down transition amplitude for process as sum of amplitudes,

ASMEFT(c) = 𝒪SM +
c

Λ2
𝒪EFT

Cross-section distribution of observable based on the squared amplitudes, 

Let’s consider a one operator at d=6 case,

|ASMEFT(c) |2 = |𝒪SM |2 + 2.
c

Λ2
ℜ(𝒪*SM𝒪EFT) +

c2

Λ4
| 𝒪EFT |2

~  |ASMEFT |2 x )( V ⇤
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Distributions estimated from MC simulations
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✦ Mapping distributions to operators

Distributions map to contributions of all the different operators,

|ASMEFT(c) |2 = |𝒪SM |2 + 2.
c

Λ2
ℜ(𝒪*SM𝒪EFT) +

c2

Λ4
| 𝒪EFT |2

For one operator, templates generated at three values of the grid should suffice to span the whole 
parameter space, 

σ(c = 0) ∝ |𝒪SM |2

σ(c = 1) ∝ |𝒪SM |2 + 2.
c

Λ2
ℜ(𝒪*SM𝒪EFT) +

c2

Λ4
| 𝒪EFT |2

σ(c = − 1) ∝ |𝒪SM |2 − 2.
c

Λ2
ℜ(𝒪*SM𝒪EFT) +

c2

Λ4
| 𝒪EFT |2
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✦ Distribution in the full parameter space

Three samples can be used to generate the continuous description, can fix  TeV for reference, Λ = 1

σ(c = 0) ∝ |𝒪SM |2

σ(c = 1) ∝ |𝒪SM |2 + 2.ℜ(𝒪*SM𝒪EFT) + | 𝒪EFT |2

σ(c = − 1) ∝ |𝒪SM |2 − 2.ℜ(𝒪*SM𝒪EFT) + | 𝒪EFT |2

σ(c) = σ(c = 0)(1 − 2c2) + σ(c = 1)(c/2 + c2/2) + σ(c = − 1)( − c/2 + c2/2)

In this example we saw a one parameter case, however this principle can be extended 
to arbitrary number of parameters which can be sampled at any set of independent 
points in the parameter space 

Morphing  procedure to turn a collection of probability models for individual points 
in parameter space to a continuous description

→

{L(data| c=0, NPs), L(data| c= -1, NPs), L(data| c=+1, NPs)}  L(data| c, NPs)→
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✦ Morphing principle

The morphing principle is based on linear algebra, very robust ! Only relies on independent sample to 
have well defined weight matrix 

The RooLagrangianMorphFunc software that is discussed in the following section is included
from ROOT release v6.26 onwards.
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Figure 2: Schema showing the design of RooLagrangianMorphFunc class in RooFit for a
simple case involving and effective Lagrangian with two parameters gSM and
gBSM. The cross section �out is a distribution of an observable and defined
for any (gSM, gBSM) in terms of the input templates of the observable denoted
by {�SM,�Mix,�BSM}. In the above, the observable distributions correspond to
(gSM, gBSM) = {(1, 0), (1, 1), (0, 1)} respectively.

The RooLagrangianMorphFunc class in RooFit implements the Effective Lagrangian Mor-
phing method, as derived in Section 2. The morphing distribution can be constructed for
an arbitrary number of parameters ~g as long as the required number of non-degenerate
samples are provided as an input to the morphing function. The morphed distribution
provides a continuous description of the observable distribution in the parameter space, as
spelled out in Eq. (10). The RooLagrangianMorphFunc implements the morphing as a sum
of functions where each of the function is given by a RooLinearCombination object. The
RooLinearCombination class implements the underlying summation of weight involved for
each template as a Kahan sum to reduce loss of numeric precision that may occur in the
repeated addition of a large number of summation terms.

To streamline the creation of a morphing function, the relevant configuration required
are provided by the user through a RooLagrangianMorphFunc::Config object to configure
the observable name, necessary parameters, coupling structures, and the input templates
required to define a morphing function. Once created, the morphing function provides a

8

The RooLagrangianMorphFunc software that is discussed in the following section is included
from ROOT release v6.26 onwards.
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Figure 2: Schema showing the design of RooLagrangianMorphFunc class in RooFit for a
simple case involving and effective Lagrangian with two parameters gSM and
gBSM. The cross section �out is a distribution of an observable and defined
for any (gSM, gBSM) in terms of the input templates of the observable denoted
by {�SM,�Mix,�BSM}. In the above, the observable distributions correspond to
(gSM, gBSM) = {(1, 0), (1, 1), (0, 1)} respectively.

The RooLagrangianMorphFunc class in RooFit implements the Effective Lagrangian Mor-
phing method, as derived in Section 2. The morphing distribution can be constructed for
an arbitrary number of parameters ~g as long as the required number of non-degenerate
samples are provided as an input to the morphing function. The morphed distribution
provides a continuous description of the observable distribution in the parameter space, as
spelled out in Eq. (10). The RooLagrangianMorphFunc implements the morphing as a sum
of functions where each of the function is given by a RooLinearCombination object. The
RooLinearCombination class implements the underlying summation of weight involved for
each template as a Kahan sum to reduce loss of numeric precision that may occur in the
repeated addition of a large number of summation terms.

To streamline the creation of a morphing function, the relevant configuration required
are provided by the user through a RooLagrangianMorphFunc::Config object to configure
the observable name, necessary parameters, coupling structures, and the input templates
required to define a morphing function. Once created, the morphing function provides a

8

Input templates Output prediction
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✦ interface between data and theory - unfolded distributions

Three possible approaches for the interface between data and theory for experimentalist
       I. Publishing theory-level distributions      

1) Full unfolding (very complicated)       ! SM(EFT) parametrization (easy)     ! Measurement

✦ Unfolding is a numerically very difficult problem that requires ‘regularization’ to make deconvolution 
 step numerically stable 

✦ Many algorithms on the market – with variable sensitivity to assumptions, biases, etc

✦ Unfolded physics distributions are extremely time and resource intensive for collaborations to produce!

[See Carsten Burgard’ talk on  
unfolding]
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2) Template cross-sections (med. hard) ! SM(EFT) param. (med. hard)        !Measurement
    II. Publishing template distribution close to reconstruction level 

✦ interface between data and theory - template cross-sections

✦ Avoid unfolding by publishing template cross-sections in regions close to analysis reconstruction region 

✦ Typically perform for Higgs cross-sections, may not necessarily extend for all use cases

✦ Additional work involved in mapping each measurement  to the expression in σ ci
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    II. Publishing template distribution close to reconstruction level 

✦ interface between data and theory - direct SMEFT modelling

✦ Publishing directly results on the parameters of the effective lagrangian  

✦ The lagrangian provides a natural description to measure physics parameter across different process !  

✦ Full power of EFT lies in global combinations !

3) Template morphing with SM(EFT) parametrization (medium)                      ! Measurement
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✦ Statistical Models with RooFit

RooFit : statistical modelling toolkit based on C++ to create and perform inference on statistical models 
of arbitrary complexity

Design principle : Mathematical functions map directly to C++ classes 
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✦ Data Modelling

Modelling composite objects based on clear connection between mathematical functions and  
class objects 
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✦ Modular design performs well with complex models
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✦ RooLagrangianMorphFunc

RooLagrangianMorphFunc : RooFit class implementing the lagrangian morphing 

The RooLagrangianMorphFunc software that is discussed in the following section is included
from ROOT release v6.26 onwards.
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Figure 2: Schema showing the design of RooLagrangianMorphFunc class in RooFit for a
simple case involving and effective Lagrangian with two parameters gSM and
gBSM. The cross section �out is a distribution of an observable and defined
for any (gSM, gBSM) in terms of the input templates of the observable denoted
by {�SM,�Mix,�BSM}. In the above, the observable distributions correspond to
(gSM, gBSM) = {(1, 0), (1, 1), (0, 1)} respectively.

The RooLagrangianMorphFunc class in RooFit implements the Effective Lagrangian Mor-
phing method, as derived in Section 2. The morphing distribution can be constructed for
an arbitrary number of parameters ~g as long as the required number of non-degenerate
samples are provided as an input to the morphing function. The morphed distribution
provides a continuous description of the observable distribution in the parameter space, as
spelled out in Eq. (10). The RooLagrangianMorphFunc implements the morphing as a sum
of functions where each of the function is given by a RooLinearCombination object. The
RooLinearCombination class implements the underlying summation of weight involved for
each template as a Kahan sum to reduce loss of numeric precision that may occur in the
repeated addition of a large number of summation terms.

To streamline the creation of a morphing function, the relevant configuration required
are provided by the user through a RooLagrangianMorphFunc::Config object to configure
the observable name, necessary parameters, coupling structures, and the input templates
required to define a morphing function. Once created, the morphing function provides a

8

Morphing object built as a 
composite object of other  
underlying RooFit objects

Computational dependency  
graph for an example object of 
RooLagrangianMorphFunc
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✦ One parameter use case 
// usage of RooLagrangianMorphFunc for simple case
// prepare inputs

// necessary strings for inputs to morphing function
std::string infilename = "inputs/input_histos.root";
std::string obsname = "pTV";
std::vector<std::string> samples = {"SM_NPsq0","cHq3_NPsq1","cHq3_NPsq2"};

// create relevant parameters
RooRealVar cHq3("cHq3","cHq3",0,-10,10);
RooRealVar sm("SM","SM",1);
// Set NewPhysics order of parameter
cHq3.setAttribute("NewPhysics",true);

// Setup config object
RooLagrangianMorphFunc::Config config;
config.couplings.add(cHq3);
config.couplings.add(sm);
config.fileName = infilename.c_str();
config.observableName = obsname.c_str();
config.folderNames = samples;

// Setup morphing function
RooLagrangianMorphFunc morphfunc("morphfunc","morphfunc", config);

Listing 1: Setup for a simple, one-dimensional morphing. The RooFit classes shown in the
diagram in Fig. 2 are color-coded here accordingly.

//RooLagrangianMorphFunc in the RooWorkspace factory interface
ws.factory("lagrangianmorph::morph(

$fileName(’inputs/input_histos.root’),
$observableName(’pTV’),
$couplings({cHq3[0,1],SM[1]}),
$NewPhysics(cHq3=1),
$folders({’SM_NPsq0’,’cHq3_NPsq1’,’cHq3_NPsq2’}))");

Listing 2: Setup for a simple, one-dimensional morphing using the RooWorkspace factory
interface.

This example uses the same process as Section 3.1, but this time, three different operators are
introduced: O

(3)
Hq , O(3)

Hl , and OHDD with three corresponding Wilson coefficients as parameters
c(3)

Hq , c(3)
Hl , and cHDD. Following Eq. (21) 10 input samples are required as input templates to

the morphing samples for this example. The 10 samples used here as inputs correspond to
four types,

• SM - the sample of corresponding to the g2
SM Eq. (4) generated using NP^2==0.

• SM-BSM Interference - three samples of the form gBSMgSM generated using NP^2==1
and by setting one of c(3)

Hq , c(3)
Hl , cHDD to c = 1.0 and the remaining ones to c = 0.0.

12

To construct the morphing function for this case three non-degenerate input distributions are
required. The sample provided as inputs to the morphing are the SM contribution (/ g2

SM),
the interference of the operator with SM (/ gSMgBSM), and the squared order contribution of
the operator for c(3)

Hq = 1.0 (/ g2
BSM) generated using the NP^2==x syntax where x is 0,1, or 2

respectively. The computational graph of RooFit function objects built by the morphing
function is shown in Fig. 5. The input distributions as well as the predictions computed by
the morphing functions are shown in Fig. 6.

The code snippet required to perform this computation using RooLagrangianMorphFunc
is shown in Listing 1. The corresponding RooWorkspace factory interface usage, which can
be used as an alternative means to the same end, is shown in Listing 2.
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Figure 6: Example of the Lagrangian morphing for a one parameter case. The input
distributions are shown on the left. The morphing prediction for select parameter
values is shown in the center. The continuous description of the morphing function
as a function of the parameter is shown in right.
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Figure 7: Example of the Lagrangian morphing for a multi-parameter use case. The
figure shows the comparison of a fit to a pseudo dataset generated at
cHDD = 0.2, c(3)

Hl = 1.0, c(3)
Hq = 0.01 as well as the correlation matrix.

The usage RooLagrangianMorphFunc class can be extended to handle arbitrary complexity
in parameters and observable distributions simultaneously modelling multiple 1D distributions.
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Figure 6: Example of the Lagrangian morphing for a one parameter case. The input
distributions are shown on the left. The morphing prediction for select parameter
values is shown in the center. The continuous description of the morphing function
as a function of the parameter is shown in right.
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ROOT file  
containing  
input dists.

observable 
name 

sample 
folders } Relevant parameters  

for EFT

} Relevant parameters  
for EFT

Setting up the morphing 
function  

// usage of RooLagrangianMorphFunc for simple case
// prepare inputs

// necessary strings for inputs to morphing function
std::string infilename = "inputs/input_histos.root";
std::string obsname = "pTV";
std::vector<std::string> samples = {"SM_NPsq0","cHq3_NPsq1","cHq3_NPsq2"};

// create relevant parameters
RooRealVar cHq3("cHq3","cHq3",0,-10,10);
RooRealVar sm("SM","SM",1);
// Set NewPhysics order of parameter
cHq3.setAttribute("NewPhysics",true);

// Setup config object
RooLagrangianMorphFunc::Config config;
config.couplings.add(cHq3);
config.couplings.add(sm);
config.fileName = infilename.c_str();
config.observableName = obsname.c_str();
config.folderNames = samples;

// Setup morphing function
RooLagrangianMorphFunc morphfunc("morphfunc","morphfunc", config);

Listing 1: Setup for a simple, one-dimensional morphing. The RooFit classes shown in the
diagram in Fig. 2 are color-coded here accordingly.

//RooLagrangianMorphFunc in the RooWorkspace factory interface
ws.factory("lagrangianmorph::morph(

$fileName(’inputs/input_histos.root’),
$observableName(’pTV’),
$couplings({cHq3[0,1],SM[1]}),
$NewPhysics(cHq3=1),
$folders({’SM_NPsq0’,’cHq3_NPsq1’,’cHq3_NPsq2’}))");

Listing 2: Setup for a simple, one-dimensional morphing using the RooWorkspace factory
interface.

This example uses the same process as Section 3.1, but this time, three different operators are
introduced: O

(3)
Hq , O(3)

Hl , and OHDD with three corresponding Wilson coefficients as parameters
c(3)

Hq , c(3)
Hl , and cHDD. Following Eq. (21) 10 input samples are required as input templates to

the morphing samples for this example. The 10 samples used here as inputs correspond to
four types,

• SM - the sample of corresponding to the g2
SM Eq. (4) generated using NP^2==0.

• SM-BSM Interference - three samples of the form gBSMgSM generated using NP^2==1
and by setting one of c(3)

Hq , c(3)
Hl , cHDD to c = 1.0 and the remaining ones to c = 0.0.
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Can also be performed with the  
RooWorkspace factory interface

Easy to extend to arbitrary number of parameters,

fit to pseudo data of distribution affected by three operators and correspond 
Pearson correlation coefficients
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Thanks for your attention !
LSMEFT =

1
⇤0L

(d=4)
SM +

X

d

1
⇤d�4L

(d)

SMEFT becoming the standard interpretation framework for measurements at the LHC to look for  
indirect signs of physics beyond the Standard Model 
 
The morphing technique provide a powerful way to model the EFT distributions in combined  
likelihoods, now available with ROOT release v6.26.00  
 

 SMEFT is global, provides an unifying framework 
 to interpret measurements consistently across  
 different sectors and experiments     
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✦ Summary


