Publishing Statistical Models

Lukas Heinrich, TUM m

Big Picture Goals

Our job: extract as much information from experimental data as possible

p(dataltheory)

p(theory)

p(theory|data) =

p(data)

"""""""""""""""""""
ATLAS Preliminary
—— Syst
{5 = 13 TeV, 36.1 fb" . S
Total Stat. Syst.
I
LHC Run 1 ———— 125.09 £ 0.24 (£ 0.21+0.11) GeV
H—ZZ*—4] = 124.88 + 0.37 (+ 0.37 + 0.05) GeV
H-yy . —125.11+ 0.42 (£ 0.21+ 0.36) GeV
Combined T 124.98 + 0.28 (+ 0.19 + 0.21) GeV
............................
124 124.5 125 125.5 126 126.5
my, [GeV]

results / insight experimentalists theorists

2

Big Picture Goals

Our job: extract as much information from experimental data as possible

p(theory

data)

Posterior

"""""""""""""""""""
ATLAS Preliminary
p—e—roi Syst.
{5 = 13 TeV. 361 fb" Total Stat. M Sy
Total Stat. Syst.
|
LHC Run 1 ———— 125.09 £ 0.24 (£ 0.21+£0.11) GeV
H—ZZ*—4l —-— 124.88 £ 0.37 (£ 0.37 £ 0.05) GeV
H-yy - — 125.11+£ 0.42 (£ 0.21+ 0.36) GeV
Combined T 124.98 + 0.28 (£ 0.19 + 0.21) GeV
1 I 1 1 1 1 I 1 L l 1 1 I 1 1 1 1 I 1 1 1 1 I 1
124 124.5 125 125.5 126 126.5

p(dataltheory)

The Likelihood: Focus of this talk

m,, [GeV]

results / insight

th
o(data) Pl Pe:ry)

Evidence

A 7

ATLAS LN

EXPERIMENT

experimentalists theorists

Our data is huge:

 we need think hard how we summarize our results to the wider community

Our experiments are unique:

These are once-in-a-lifetime machines. Need to preserve data in as much
detail as we can, in a format that can be archived for the long-term

Search for suitable data products for HEP

The Likelihood is unique!

Likelihoods are a good bottleneck through which all information flows

It's a high information-density product
 almost every important decision is reflected in the likelihood

(if it doesn't affect the likelihood, what are you doing?)
: : DAQ Analysi Detect
) [Callbratlonj [Decisionsj [Dn:s)i,gsrlls J [Geeo(re:efr;J
e all the usual results are inferences \ \ /
based on the likelihood (downstream)

Limits -
[(Intervals)]A/ Measurements DatalS_|m
(point estimates) Comparison

[Expected Yields]

What you can do with a Likelihood

Likelihoods are not only useful to recreate results.
You can use them to generate new scientific results!

1. Statistical Combination

e.g. global fits of multiple experiments / analyses

p(x; | s1(0)+by) p(a|bOxp)

p(xy | $,(0)+b2) p(a|Ogp)
S

\

4

ATLAS

Vs=13 TeV, 139 fb™’
All limits at 95% CL

- - Expected Limit (+ 1o,,,)

— Obs. Limit off-shell

— Obs. Limit compressed
LEP excluded

-
-
-
-
-—
-
——"
-

O_FS-IE.—-——I-IIIIIIIIIII

100 120 140 160 180 200 220 240 260 280 300
m(x) [GeV]

px; | $1(0)+b,)p(x, | 55,(0)+b,) pla|Oxp)

What you can do with a Likelihood

2. Reinterpretation:

Modify the ingredients of a likelihood (e.g. change signal component) and re-run
the statistical analysis. Note: needs sufficiently detailed information to do this!

Signal Region

Signal Region
CLs =0.05

Pois(n | u s,(0)+D)... Pois(n | i sz()+D). ..

A (in-)consequential workshop

Uniqueness of likelihood model as a data product

1st PHYSTAT: meeting between statisticians + physicists

Massimo Corradi

It seems to me that there is a general consensus that what is really meaningful for an experiment
is likelihood, and almost everybody would agree on the prescription that experiments should give their

likelihood function for these kinds of results. Does everybody agree on this statement, to publish likeli-
hoods?

Louis Lyons

Any disagreement ? Carried unanimously. That’s actually quite an achievement for this Workshop.

AAAAAAAAAAAAAAAA

has been recognized 20 years ago

RRRRRRRRRRRRRRRRRRRRRR

EEEEEEEEEEEE

gg
>

Discussion arrived at conclusion: Experiments should publish likelihoods!

(Spoiler: it didn't happen for a long time)

20 Years Later

Publishing Likelihoods is becoming a thing. Let's see how it works!

New open release streamlines interactions with theoretical
physicists

The ATLAS Collaboration has released the first open likelihoods from an LHC

experiment.
12th December 2019 | By Katarina Anthony

The difficulty in publishing likelihoods
What exactly should we publish?

The likelihood function with The profile likelihood ratio function
data forever fixed ? (fixed data and fixed profiled NP) ?

L(0) = L(p,v) = p(z|p,) Ly, v(p))

") = T, 5(0)

Both of these are not great:
 just the Likelihood Function cannot be used for reinterpretation

. for Frequentist inference we need to be able to sample x ~ p(x|0)
 for combinations we need be able to vary to NP-values

v(x1) # v(xe) # v((T1,72))

10

The difficulty in publishing likelihoods

Gold Standard: publish the full model p(x | 6)!

 can be use for Frequentist and Bayes Inference
 enables combinations, enabled reinterprations through inspection

When we say "publish the likelihood" we mean "publish the model p(x|6)"

A typical HEP probability model consists of two parts
* you should be preserving both

PX[0) = Prgin(X [1, 1) = Payx (X, | V)

o X

Constraint Terms
(simplified summary of e.g. your
collab's calibration measurements)

Main Measurements
(your analysis)

11

How to preserve p(x|0)

Our goals for preserving p(x |) should be

e software independent:

we want to capture the mathematical structure of p(x | 6) not
the software that implements it

* long-term archival format

we want to publish the data on e.g. HepData to be
used for decades to come

 optimized for reuse

reinterpretation / combination should be first-class operations

Choosing Building Blocks

Almost no constraints to a likelihood p(x | 0) except for normalization

If you want to really allow "any" function ("open world of all models")
to be preserved, you're back to preserving software

double my Lhood(double*

my_Lhood(

double L = ... —

} return return

To have any chance at preserving in a software-independent way,
you heed to restrict yourself: choose a finite number of building blocks

High- and Low-level Languages

In standard programming, we have high level and and low-level languages

* think: Python vs C++ vs Assembly code. The high-level languages operate
usually at higher levels of abstraction
* high: allow concise description of complex settings
* low: more freedom, express things that are not possible at high level

o often: high-level languages are implemented in low-level ones

In probabilistic modelling! we see the same:

* high-level modelling: few building blocks, lots of assumptions
* low-level modelling: almost "open world", more freedom & more complex

1(sometimes also called prob. programming)

HistFactory

HistFactory is an example of a high-level language
* only supports binned models

» systematic modeling only through a fixed (small set) of options

Despite constraints, it's very versatile (good choice of building blocks!)
* almost all binned analyses in e.g. ATLAS use HistFactory

ATLAS
s oo i H—ZZ*—4l
Vs=7TeV JLdt=

ET'sS [GeV]

Implemented in two "low-level" languages:

pvhf: scipy.stats (Python) ROOT HistFactory: RooFit (C++)

HistFactory

Building Blocks of HistFactory:

 nominal histogram shapes

e a fixed set of systematic types
 chosen to be reusable in many contexts
 auto-matched with appropriate constraint termss

Description Modification Constraint Term ¢,

= =

See tUto rl al at: [LI n k] Uncorrelated Shape Kseb(Yb) = Vb Hb Pois (r,, = o-b—zl Py = ab_zyb)
Correlated Shape Ay (@) = £ (a] Ayepam—1> Dsepamt) Gaus(a=0|a,0 = 1)
Normalisation Unc. Ksep(@) = &) (al K o> K'scb‘a:l) Gaus(a=0|a,0=1)
MC Stat. Uncertainty Kser (V) = Vb [1, Gaus (arb = 1]y, 65)
Luminosity Ksep(A) = A Gaus (I = Ag| 4,0;)
Normalisation Ksep(Up) = MHp

Data-driven Shape Kseb(Yp) = Vb

Input

Op
Ascb,a:;tl

Kscb,a::tl
2 2
61) - Zs 5sb

AO’ O,

https://pyhf.github.io/pyhf-tutorial/HelloWorld.html

HistFactory JSON

Part of pyhf a new software-independent JSON format for HistFactory:

$ cat << EOF | tee likelihood.json | pyhf cls
{
"channels": [
{ "name": "singlechannel",
"samples": [

e — " ROOT " Fit Results
e Workspace etc..

"data": [12.0, 11.0],
"modifiers": [{ "name": "mu", "type": "normfactor", "data": null}]

{ "name": "background",
"data": [50.0, 52.0],
"modifiers": [{"name": "uncorr_bkguncrt", "type": "shapesys", "data": [3.0, 7.0]}]
}
]
}
1,
"observations": [
{ "name": "singlechannel", "data": [51.0, 48.0] }
1,
"measurements": [
{ "name": "Measurement", "config": {"poi": "mu", "parameters": []} }
1,
"version": "1.0.0"
}
EOF

Advantages of JSON:
* ubiquitous, human-/machine-readable ASCII,
patchable (see Backup)

Fit Results
etc..

HistFactory JSON

Generating and Reading HistFactory JSON is easy in ROOT & Python
Writing JSON

pyhf ROOT

fii.Nbdel(.“) $> root workspace.root

root[0] Measurement->PrintXML()
$> pyhf xml2json Measurement.xmu

NS = nf.workspace.Workspace.build(
json.dump(ws, 'workspace. json"')

Reading JSON

tmport pyhf $> pyhf json2xml workspace. json
pyhf.Workspace(json.load('workspace.jsxnﬂ')) $> hist2workspace Measurement.xml

m(x,) [GeV]

Publishing Models

ATLAS is already publishing HistFactory JSON on HepData

Tt 2% T
AL RL X,

my,) 1aev)

DOI 10.17182/hepdata.89408.v2

b, b, producsion : B, = b i, = bh i ; m

() = 60 GoV

3
o
| L B

S
S
|

800

600

400

T 1 I| TT Il T ll T

~rrrrrrrrrTTTY

ATLAS
Vs=13 TeV, 139 b, 95% CL

=== ExpectedLimi (=1 a,)

ey
w— Clogarend Uit (1000
recn

ATLAS B TaV, 203 16 ' (obemrve)

PR P e

L

T

A l Al l LA l LA l L-

Al l Al l LA l LA

20985

PR PSR T TN T N
400 600 800

1000

1200

1200 1600
m(b,) [GeV)

DOI 10.17182/hepdata.90607.v3

500
450
400
350
300
250
200
150
100

50

»WhTT. W - v, h - bb

..N I.

TLAS

i

= = = Expected Lmit {£10,)

— Observed Limit (10727

s=13 TeV, 139 fb", All limits at 95% CL

lll

() FET B

el | P e
200 300 400 500

s de o 1 d
600 700

L
800 900 100

(.)‘

m(T-/72) [GeV]

m(,) [GeV]
n
Z

n
o
(=]

150

100

50

DOI 10.17182/hepdata.91127.v2

m(z,) [GeV]

LR I T I Trrt71

T I LI

— ATLAS
- V5=13Tev, 139 b

- Expected Limit (10,
" Al limits at 95% CL . 1 Oep)

~—— Observed Limit (1 op.>")

SR-combined

300

250

200

150

100

12
100

A, W) L 2em

e o by v s ol s o asleog, | RUNIERRIUING | |
150 200 250 300 350 400 450

m(7) [GeV]

- ATLAS
{s=13 TeV, 139 fb”, All limits at 95% CL

= = =+ Expected Limit (+1a,,.)
— Observed Limit (+1a5.c")

IIIIYIII

l]ll'

! 1 I LA L [|
>

00 _45) _ 500
mix, /%) [GeV]

DOI 10.17182/hepdata.91214.v3

mi,) [GeV]

DOI 10.17182/hepdata.98796.v2

Lifetime [ns)

2500

1500

1000F= "

B =l

10'
10°
10"
102

10°

§ @ production, § — ga'WZi,; m(7,) = (@) + m{z V2, m(L}) = (i, + mii;)H2

S DA B T T T
B ?_‘";g?r v joopt Expected Limit (+10,.)]
- \S= ev, — SUSY T
" All limits at 95% CL Observed Limit (+16p,,)
[SS/AL obs. 36 b’ N
| [arXn:1706,03731) |
: . {\\ ‘.’0 n‘:."“:__ :
= @@ -
[T e .]
N ,«_»gt_*f]
]]
’ —
L L 1 . A L J s ‘s ' l: ' 1 l L L l A L L l A]

1200 1400 1600 1800 2000 2200

mig) [GeV]

Lela—IGIG, lele .8 .7 lelen1]

™Y | DML |

ATLAS
V5=13 TeV, 139 1b”
Al limits at 95% CL

—

!

I

Prrraprere
Expected Limit {t15,,)

SusY, 3
Obgerved Limit (1o,

A NPT PP PP PP PP I PP
100 200 300 400 500 600 700 800 900

ml) [GeV]

A SModelS interface for pyht likelihoods

Gaél Alguero?, Sabine Kraml?, Wolfgang Waltenberger®:°

¢Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes,
CNRS/IN2P3, 58 Avenue des Martyrs, F-38026 Grenoble, France
bInstitut fiir Hochenergiephysik, Osterreichische Akademie der Wissenschaften,
Nikolsdorfer Gasse 18, 1050 Wien, Austria
¢ University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Wien, Austria

) 2020

-~

The new version, SModelSv1.2.4, is publicly available from https://
smodels.github.io/ and can readily be employed for physics studies. We
congratulate ATLAS to the important move of making full likelihood infor-
mation available in digital format and are looking forward to including more
such data in future updates of SModelS.

This completes the work started in contribution 15 of [9] for SModelS;
the MadAnalysis 5 interface to pyhf should become available in the upcoming
MadAnalysis5 v1.9 release.

Last but not least we note that the technical discussions with the pyhf
team are handled via github’s issue tracking system, see e.g. https://github.

com/scikit-hep/pyhf/issues/620, and are thus transparent and open to
all.

... and it's being reused immediatly by theorists

RooFit JSON

Generalizing from pyhf: Can try to do something similar to RooFit?

 much more "open-world": more freedom, but lower-level description of
the intended model. More difficult to keep implementation-agnostic

 works for binned & unbinned models

* building blocks are: PDF types, connectors

X, V,Z
Math Jxy.2)
RooAbsReal f

RooFit
| diagram

| RooRealVar x RooRealVar y RooRealVar z
RooFit

code RooRealVar x(“x”,”x”,5) ;

ROORealvar y (\\yll , llyll , 5) -
RooRealVar z(“z”,”z”,5) ;

RooBogusFunction £ (“f”,”f” ,x,y,2) ;

[-

An early look at RooFitJSON
New Feature in ROOT:

MacCCc .
1asSs " . 5", - y
- - Mma !l e =
"power": "@.5" , min". 100. 0,
~ . UEYE-3 -1

"type": "ARGUS" "mes": {
}, ' "max": 5.3,
. . "model" : MR E a2
c tg": "value": 5.25

ool = ROOT.RooJSONFactoryWSTool(ws) : o S
tool. importJSON('workspace. json') :QHEWTA e 10000,

signal", ”;ﬁn": 0.0, |
"value": 200.0

n ty :':n: "ndfsum"
) My, J -~ 11 «
1 valilue':
J)
-
Neqtanal e g
= =lial . 43
' e o -
Tmaani!s "~ Tmoan ! < YWl
call . = L =dlil o
n

hs = ROOT.RooWorkspace("workspace") | mes \ Naluers o662
tool = ROOT.RooJSONFactoryWSTool(ws) : |
tool.exportJSON(‘workspace. json')

ROOT
Workspace

Fit Results

etc..

Implemented Building Blocks

As in pyhf: a subset of the "open world" Is supported:

Importers exist for

Support so far for some of the most
common PDFs. Available in ROOT 6.26

Roundtrip Workspace ROOT <> JSON
IS a design goal!

RooBinSamplingPdf
RooBinWidthFunction
RooFormulaVar
RooGenericPdf
RooRealSumPdf
RooHistFunc
Piecewiselnterpolation
RooProdPdf
RooAddPdf
RooSimultaneous
RooRealSumPdf

ImportExpressions exist for

So far only a ROOT implementation,
(maybe a independent one is possible?)

This is a new development for ROOT
Testers are very welcome! More Info: [L|nk]

RooGaussian
RooExponential
RooPoisson
RooProduct
FlexibleInterpVar
RooAddition
ParamHistFunc
RooArgusBG

Exporters exist for

RooBinWidthFunction
RooProdPdf
RooProdPdf
RooSimultaneous
RooBinSamplingPdf
RooHistFunc
RooGenericPdf
RooFormulaVar
RooRealSumPdf
FlexibleInterpVar
Piecewiselnterpolation

ExportExpressions exist for

RooGaussian
RooPoisson
RooExponential
RooProduct
RooProdPdf
ParamHistFunc
RooAddPdf
RooAddition
RooArgusBG

https://github.com/root-project/root/blob/master/roofit/hs3/README.md

Summary

th
o(data) p(theory)

p(theory|data) =

Publishing stat. models is an obviously good thing to do.
 enables a lot of new physics, key especially for "big science”

But it didn't happen for 20 years:
* Now we have a few good options:
pvhf (for HistFactory), HS3 for RooFit models

Now we have new momentum across the field
* [If you need help get in touch!

