

Superconducting Quantum Interference Devices (SQUIDs)

Sebastian Kempf

14th Terascale Detector Workshop 2022 | Virtual Workshop | February 23rd to February 25th, 2022

Optical interferometers

optical interferometers are among the most sensitive measuring devices, e.g. for gravitational wave detection

B.P. Abbott et al., Phys. Rev. Lett. 116 (2016) 061102

Optical interferometers

optical interferometers are among the most sensitive measuring devices, e.g. for gravitational wave detection

Need for sensors with utmost sensitivity...

...and many more...

Superconductivity in a nutshell

perfect conductor

H.K. Onnes, Leiden Commun. 124c (1911)

superdiamagnet / ideal diamagnet

W. Meissner, R. Ochsenfeld, Naturwissenschaften 21 (1993)

BCS-theory: superconductivity is governed by Cooper pairs being described by a macroscopic wavefunction

$$\mathbf{\Psi}(\mathbf{r},t) = \Psi_0 e^{i\varphi(\mathbf{r},t)}$$

mathematically equivalent to plane wave!

Mach-Zehnder-Interferometer

interference pattern depends on phase difference between both interferometer arms

Superconducting quantum interference devices

SQUID = quantum electromagnetic equivalent of an optical interferometer

phase difference influence by magnetic flux threading SQUID loop

Josephson tunnel junctions

Josephson tunnel junctions

SQUID-based detector readout

dc-SQUID = magnetic flux to voltage / current converter

- compatibility with mK operation temperatures
- low power dissipation: P_{diss} ~10 pW...1 nW
- near quantum-limited noise performance: ε ~1 h possible

Two-stage SQUID setup with flux-locked loop

SQUID-based amplifier chain with ultrafast feedback electronics

Integrated cryogenic microcalorimeters

M. Krantz, SK *et al.*, IEEE Explore - ISEC 2019 M. Krantz, PhD thesis, Heidelberg University (2020)

Integrated cryogenic microcalorimeters

M. Krantz, SK *et al.*, IEEE Explore - ISEC 2019 M. Krantz, PhD thesis, Heidelberg University (2020)

Pixels, pixels, pixels...

Cryogenic 'hard' multiplexing

method by which multiple signals are combined into one 'physical' channel multiplexing (muxing) to share a scarce resource. output signals input signals communication channel MUX **DEMUX** coaxial cable signal flow indivdiual indivdiual modulation combination transmission demodulation signals signals multiplexing technique / multiplexer

Frequency-division multiplexing (FDM)

idea: detector signals are modulated on independent MHz / GHz carrier signals

non-linear superconducting element required

Non-hysteretic rf-SQUIDs

17

Non-hysteretic rf-SQUIDs

Non-hysteretic rf-SQUIDs

Microwave SQUID Multiplexing

µMUX based readout system

ECHoMUX - some results

64 pixel detector array connect to µMUX (latest generation); full online demodulation

first truely multiplexing demonstration of magnetic microcalorimeters some issues still to be resolved (ongoing)

D. Richter, PhD thesis, 2021 + in preparation

Superconducting Quantum Interference Devices (SQUIDs)

Thank you for your attention!

Sebastian Kempf

14th Terascale Detector Workshop 2022 | Virtual Workshop | February 23rd to February 25th, 2022

