ATLAS ITk strip petals

14th Terascale Detector Workshop 2022

Sergio Díez Cornell 24.02.2022

The new silicon tracker

Replacing the old Inner Detector by a new all-silicon Inner Tracker (ITk)

The new silicon tracker

Replacing the old Inner Detector by a new all-silicon Inner Tracker (ITk)

Goals and challenges of the ITk

Layout goal: Maintain or improve resolution and particle identification performance of current ID

The strips tracker

The outermost region of the Inner tracker

4 barrel cylinders, 6 EC disks per side

160 m² of silicon, 50 M channels

The strips tracker

"Stave" and "petal" concept

6 (9) types of single-sided silicon modules per side ~ 30 cm ~ 60 cm

PETALS

Carbon fiber "sandwich" structures supporting multiple strip silicon modules inside the tracker

Embedded cooling and electrical connections

Modules are directly glued onto the structures

The strips tracker

"Stave" and "petal" concept

PETALS 6 (9) types of single-sided silicon modules per side ~ 30 cm ~ 60 cm

Carbon fiber "sandwich" structures supporting multiple strip silicon modules inside the tracker

Embedded cooling and electrical connections

Modules are directly glued onto the structures

Double-sided modules approach

The "super-modules": an earlier alternative

Double-sided module geometry with the same building blocks (sensors, ASICs, power and DC-DC boards)

Ultimately, cooling and amount of material concerns, apart from the lack of a viable approach for the endcap regions, led to discarding this option favoring the stave and petal approach

S. González-Sevilla et al., JINST 9, P02003 (2014)

High granularity

The geometry of the endcap petals is dictated by the particle occupancy

Strip lengths chosen to cope with occupancy
20 mrad stereo angle built into the petal
IP pointing strips for optimal φ resolution
Trapezoidal-like shapes to maintain uniform strip length

First Pre-Production R4 module, built at TRIUMF (Canada)

The strips modules

The strips modules

First Pre-Production R4 module, built at TRIUMF (Canada)

Differentiation factor for microelectronic technologies

Silicon microstrip sensors: n+ strips in p-type FZ substrate (n-in-p)

Differentiation factor for microelectronic technologies

Silicon microstrip sensors: n+ strips in p-type FZ substrate (n-in-p)

Faster and more rad-hard than p-in-n Good signal even under-depleted Well established technology

6" wafer technology (~10x10 cm²)

Spatial resolution ~ 20 µm

Time resolution ~ 3 ns

Differentiation factor for microelectronic technologies

Silicon microstrip sensors: n+ strips in p-type FZ substrate (n-in-p)

Faster and more rad-hard than p-in-n Good signal even under-depleted

Well established technology

6" wafer technology (~10x10 cm²)

Spatial resolution ~ 20 µm

Time resolution ~ 3 ns

Radiation hardness well understood over the years

Sensors meet specifications after irradiations

Differentiation factor for microelectronic technologies

Readout and control electronics: 130 nm CMOS

ABC*	Sensor	ABC*
ABC*		ABC*
ABC		ABC*
ABC PLQAH		ABC*
ABC*	DC-DC upfeast	ABC*
ABC	AMAC BO	ABC*
ABC	R HA-WAX	ABC*

Differentiation factor for microelectronic technologies

Readout and control electronics: 130 nm CMOS

Radiation-hard by design

Enclosed layout transistor geometry to mitigate total dose effects

Triplication logic to mitigate Single Event Upsets (SEUs) \rightarrow "Majority wins"

ABCStar

Low mass support structures

Minimizing the material of support structures

Petal "cores": carbon fiber-based sandwich structures with embedded cooling

Mechanical precision

Thermo-electrical performance

Low mass

DESY. ATLAS ITk strip petals | S. Díez Cornell, 24.02.2022

Low mass support structures

"Facesheets": bus tapes co-cured with CFRP pre-preg

Optimized for 640 MHz differential signals

Co-cured together in autoclave with lay-up of K13C2U/EX1515 CF pre-preg

High speed

Coping with 1MHz trigger rates

The STAR architecture

640Mbit/s downlinks from each hybrid controller chip

High speed

Data concentrator boards to the outside world

"End of Substructure" board: one per petal side

E-Links A

IpGBT

I₂C

S...../

TTC Bus

E-Links B

lpGB1

The "petalets"

Multiple implementations of downlinks and split modules

Split readout: the "bear"

Common readout: the "lamb and flag"

DESY. ATLAS ITk strip petals | S. Díez Cornell, 24.02.2022

Split readout scheme proved to be less noisy and easier to manufacture mechanically

S. Kuehn et. al, JINST13 (03), pp. T03004 (2018)

Low power

Minimizing power dissipation and cable losses

~65 W per petal
(~57k readout channels)
→ 1.1 mW/ch
...in one cable

Low power

Minimizing power dissipation and cable losses

~65 W per petal
(~57k readout channels)
→ 1.1 mW/ch
...in one cable

~5.1 W per SCT module
(~ 1.5k readout channels)
→ 3.3 mW/ch
...in one cable

Low power

Minimizing power dissipation and cable losses

~61 W per petal
(~57k readout channels)
→ 1.1 mW/ch
...in one cable

~5.1 W per SCT module (~ 1.5k readout channels) \rightarrow 3.3 mW/ch ...in one cable

Power board:

Buck DC-DC converter with switch power transistors

LV and HV control circuitry and monitoring

Powering of ITk strips modules

A years long development...

Total current = n x (I/r) Total voltage = V x r

Shieldless "stavelet"

DC-DC side

Total current = I Total voltage = V x n

Serial powering side

Sensitivity of SP to CM and DT noise and lack of efficient option for EC led to DC-DC power baseline

Global structure mostly made out of CFRP or CFRP sandwiches

Modular electrical and services

Low mass, low cost, low power

"Blades" or "spokes"?

A slide from six years ago...

Endcap integration structures: 2 options

CF blades are single units CF structure to hold blades Blades with petals are mounted in structure **Most challenging is to precisely mount blades**

The two concepts are not so different Work on services, etc, shared between the two concepts Both concepts benefit by comparing the two approaches Internal review in order to fix the baseline design will occur in May 2016

CF wheels with spokes are single units. Wheels are put on inner tube. Petals are mounted on wheels. **Most challenging is the production of the wheels**

06 Apr 2016

S. Diez, 9th Terascale detector workshop (Univ. Freiburg)

27

A hybrid solution was adopted

"Blades" on "wheels", kinematic mount of petals

Where are we?

Pre-production is in full swing

Infrastructures and tooling ready

Production processes under qualification

Sensor and global structures already in production

End-cap arrival at CERN ~ end 2025

Thank you

The ATLAS spectrometer

"A Toroidal LHC ApparatuS"

44m

The ATLAS spectrometer

A meaningful size comparison

The ATLAS spectrometer

DESY. ATLAS ITk strip petals | S. Díez Cornell, 24.02.2022

Collisions at the HL-LHC

Increasing the luminosity tenfold

Collisions at the HL-LHC

Increasing the luminosity tenfold

Increased instantaneous luminosity $10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5\text{-}7.5x \ 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ and pp interaction per bunch crossing $25 \rightarrow 200$

Increased integrated luminosity $300 \text{ fb}^{-1} \rightarrow 3000-4000 \text{ fb}^{-1}$

Collisions at the HL-LHC

Increasing the luminosity tenfold

Increased instantaneous luminosity $10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5\text{-}7.5x \ 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ and pp interaction per bunch crossing $25 \rightarrow 200$

Increased integrated luminosity $300 \text{ fb}^{-1} \rightarrow 3000-4000 \text{ fb}^{-1}$

Double-sided modules approach

The "super-modules": an earlier alternative

Double-sided module geometry with the same building blocks (sensors, ASICs, power and DC boards)

TPG, AIN, carbon-carbon sheet and precision washers as support

Cooling lines at the modules periphery

S. González-Sevilla et al., JINST 9, P02003 (2014)

Embedded fan-ins?

The TID "bump"

Unexpected effect at low ionizing doses on 130 nm CMOS technologies

Very significant effect on power consumption at the early stages of the detector

Digital currents recover after a few Mrad

The TID "bump"

Unexpected solution for an unexpected problem

Chipset dies are pre-irradiated up to ~ 5 Mrad even before module construction

Low mass support structures

Low cost

Harmonized tooling and automation

Dedicated effort on tooling and procedures to avoid learning curves for different module types

Automation of glue dispensing and module loading

The ATLAS ITk strips tracker

Where are we?

Production is around the corner

