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Where is MCMC useful?

I Deterministic integration algorithms for low dimensions
(n . 3): quadrature, trapeziodal, etc.

I Monte Carlo sampling for intermediate dimensionality
(3 . n . 10): VEGAS, MISER, etc.

I MCMC great for large dimensional integrals (10 . n . ??).

I Today we will solve an n = 1728 dimensional integral with
MCMC.

I ‘integral’ = sampling some large space of configurations



Random numbers do integrals: area of some shape S

I Inscribe S in rectangle R of area
L×W

I Generate random points uniformly in R

I Count: inside S or not?

I Repeat!

Ashape

LW
= lim

Ntot→∞

Ninside

Ntot
=

∫
d2x f (x) p(x) = 〈f (X )〉

f (x) =

{
1, x ∈ S

0, x /∈ S
, p(x) =

{
1

LW , x ∈ R

0, x /∈ R



Importance sampling: capture some features of integrand

I =

∫ 3

0
dx

e−x

1 + x
9

≈ 0.873109 = 〈f (U)〉 = 〈g(Y )〉

f (x) =
3e−x

1 + x
9

, g(x) =
1− e−3

1 + x
9

pU(x) =

{
1
3 , x ∈ [0, 3]

0, otherwise
, pY(x) =

{
e−x

1−e−3 , x ∈ [0, 3]

0, otherwise

I integral written as either uniform (U) or exponential (Y )
random variable.

Example from C. Morninstar (hep-lat/0702020)



I Better to use exponential random variate!

I Importance sampling reduces the variance.
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Markov Chain Monte Carlo

I What if p(x) is not easy to generate?

I Construct Markov Chain with p(x) as limiting distribution

I Motivating example: scalar field configurations on a periodic
L3 lattice

φx ∈ R, I = 〈m(φ)2〉 =

∫ ∏
x

dφx m(φ)2 p(φ),

m(φ) =
1√
V

∣∣∣∣∣∑
x

φx

∣∣∣∣∣ , p(φ) =
e−S(φ)

Z
,

S(φ) =
∑
x

−2κ
∑

µ=1,2,3

φxφx+µ̂ + φ2
x + λ(φ2

x − 1)2


I Easy to sample p(φ) if κ = λ = 0.



Markov Processes:

I A random process is a sequence of random variables:
{Xt}, t = 0, 1, 2, . . .

I Markov processes satisfy the Markov property:

P(Xt = xt |X0 = x0, ...,Xt−1 = xt−1) = P(Xt = xt |Xt−1 = xt−1)

I Homogeneous Markov processes (HMC’s) also have

P(Xt = x |Xt−1 = y) = P(Xt′ = x |Xt′−1 = y) = Mxy ,

where Mxy is the Markov matrix.



Fundamental limit theorem:

I Stationary distribution:
∑

y Mxypy = px

I A Markov Chain is ergodic if it is:
I irreducible: all states are accessible from all others
I aperiodic: no ’cycle’ transitions which loop in a pattern
I positive recurrent: won’t ‘run away’ to infinity

I An ergodic chain has a unique, universal stationary
distribution

px = lim
t→∞

(Mt)xy , ∀y

I Will approach the limiting distribution (‘thermalize’,
‘equilibriate’) for any starting configuration.



Defintions: assume a chain in equilibrium. Consider some
Yt = f (Xt), with 〈Yt〉 = µ.

I Autocovariance:

RY (|t − s|) = 〈(Yt − µ)(Ys − µ)〉

I Autocorrelation: ρY (t) = RY (t)/RY (0)

I Integrated autocorrelation time:

τint,Y (τ) =
1

2
+

τ∑
t=1

ρY (t), τint,Y ≡ τint,Y (∞)



Recall the Central Limit Theorem (CLT): if σ, µ <∞, then
distribution of the sample mean Sn approaches a gaussian

lim
n→∞

pSn(x) = Gauss(µ,
σ√
n

; x)

The CLT is modified in the presence of autocorrelations!

I Need additional condition: τint <∞

I CLT works as before but with modified variance

σ̃2 = σ2 + 2
∞∑
t=1

R(t) = 2τintσ
2

I ‘Effective statistics’ ñ = n/(2τint). Large autocorrelations are
a problem!



What we know:

I Ergodic chains have a unique stationary distribution

I Sampling from a chain in equilibirium behaves according to
the CLT.

I Confidence intervals, statistical errors reliably estimated using
the CLT accounting for autocorrelation

But how do we construct a chain with the desired limiting
distribution?!?



Detailed balance: easy way to calculate stationary distribution∑
x Mxypy = px

I Finding eigenvectors of the Markov matrix M is difficult.

I If px satisfies detailed balance:

px
py

=
Mxy

Myx
, ∀x , y

it is a stationary distribution.

I Need also that the chain is ergodic for Fundamental Limit
theorem to hold.



Common strategy: the Metropolis-Hastings algorithm

I Split application of M (update) into two steps: proposal and
acceptance.

I Propose a change according to hxy , accept this change with
probability axy .

I Markov (transition) matrix is now:

Mxy =

{
hxyaxy , x 6= y

1−
∑

k 6=x hkyaky , x = y

I Detailed balance is satisfied if:

axy = min

(
1,

pxhyx
pyhxy

)



I Assume a reversible proposal hyx = hxy :

axy = min

(
1,

px
py

)

I Assume px = 1
Z e
−S(x):

axy = min
(

1, e−∆S
)
, ∆S = S(x)− S(y)

I If S(y) ≤ S(x), always accept.

I If S(y) > S(x), sometimes accept.

Proposal must change state optimally:

I If too large: ∆S >> 0, low acceptance rate, large
autocorrelation.

I If too small: ∆S ≈ 0, high acceptance rate, large
autocorrelation



Back to scalar field example. Recall:

p(φ) =
e−S(φ)

Z
, S(φ) =

∑
x

−2κ
∑

µ=1,2,3

φxφx+µ̂ + φ2
x + λ(φ2

x − 1)2


I Need a proposal step h(φ′ ← φ) that is

I reversible: h(φ′ ← φ) = h(φ← φ′)
I Doesn’t give large ∆S = S(φ′)− S(φ)

I Local proposals are most efficient, but not generally applicable

I Global proposal: Hybrid Monte Carlo (HMC)
(Duane, Kennedy, Pendelton, Roweth ‘87)



Hybrid Monte Carlo (HMC):

I Add ‘conjugate’ degrees of freedom: πx ∈ R

I Define the ‘Hamiltonian’ of a combined configuration:

H(φ, π) =
1

2

∑
x

π2
x + S(φ) = K (π) + V (φ)

I Draw the πx individually from a unit normal distribution.

I Evolve (φ, π) according to Hamilton’s equations

dφx
dt

=
∂K

∂πx
,

dπx
dt

= − ∂V
∂φx

for some trajectory length τ .

I Accept/Reject using ∆H = H(φ′, π′)− H(φ, π) with
φ′ = φ(τ) and π′ = π(τ).



Numerical integration of Hamilton’s equations:

I Divide trajectory length into Nτ steps ε = τ/Nτ

I Simple but effective integrator (Leapfrog):

ILF(ε) = I1
( ε

2

)
I2 (ε) I1

( ε
2

)
where

I1(ε)

(
φ
π

)
=

(
φ+ επ
π

)
,

I2(ε)

(
φ
π

)
=

(
φ

π + εF (φ)

)
with Fx(φ) = − ∂S

∂φx
.

I Reversible and symplectic scheme means small ∆H.

I These steps can be generalized to create other reversible,
symplectic integrators. (Omelyan, Mryglod, Folk, ‘02)



I Second-order OMF (OMF2):

IOMF2(ε) = I1 (ξε) I2
( ε

2

)
I1 ({1− 2ξ}ε) I2

( ε
2

)
I1 (ξε)

Incredibly small errors result from ξ = 0.1931833275037836.

I Fourth-order OMF (OMF4):

IOMF4(ε) = I1 (ξε) I2

(
1− 2λ

2
ε

)
I1 (χε) I2 (λε)×

I1 ((1− 2ξ − 2χ)ε) I2 (λε) I1 (χε) I2

(
1− 2λ

2
ε

)
I1 (ξε)

Incredibly small(er) errors result from

ξ = 0.1931833275037836,

λ = −0.02094333910398989,

χ = 1.235692651138917.



Summary:

I MCMC is great for importance sampling large-dimensional
integrals with a non-seperable pdf

I Theorems allow for rigorous (in principle!) convergence and
error estimates

I Metropolis-Hastings propose/accept algorithm easily ensures
the desired limiting distribution

I HMC provides a global proposal step with a reasonable
acceptance rate.


