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Where is MCMC useful?

» Deterministic integration algorithms for low dimensions
(n < 3): quadrature, trapeziodal, etc.

» Monte Carlo sampling for intermediate dimensionality
(3 < n<10): VEGAS, MISER, etc.

» MCMC great for large dimensional integrals (10 < n <77).

» Today we will solve an n = 1728 dimensional integral with
MCMC.

> ‘integral’ = sampling some large space of configurations



Random numbers do integrals: area of some shape S
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» Generate random points uniformly in R

» Count: inside S or not?
> Repeat!
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Importance sampling: capture some features of integrand
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» integral written as either uniform (U) or exponential (Y)
random variable.

Example from C. Morninstar (hep-lat/0702020)



> Better to use exponential random variate!

» Importance sampling reduces the variance.
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Markov Chain Monte Carlo
» What if p(x) is not easy to generate?

» Construct Markov Chain with p(x) as limiting distribution

» Motivating example: scalar field configurations on a periodic
L3 lattice
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» Easy to sample p(¢) if c = A =0.



Markov Processes:

» A random process is a sequence of random variables:
{X:}, t=0,1,2,...

» Markov processes satisfy the Markov property:

P(Xt = Xt|X0 = X0y o0y Xt—1 = Xt—l) = P(Xt = Xt’Xt—l = Xt—l)

» Homogeneous Markov processes (HMC's) also have

P(X: =x|Xt—1=y) = P(Xe =x|Xe_1=y) = M,y ,

where M, is the Markov matrix.



Fundamental limit theorem:
> Stationary distribution: Zy M.y py = px

» A Markov Chain is ergodic if it is:

» irreducible: all states are accessible from all others
» aperiodic: no 'cycle’ transitions which loop in a pattern
P positive recurrent: won't ‘run away' to infinity

» An ergodic chain has a unique, universal stationary
distribution

px = lim (Mt)xyv Vy

t—00

» Will approach the limiting distribution (‘thermalize’,
‘equilibriate’) for any starting configuration.



Defintions: assume a chain in equilibrium. Consider some
Yt = f(Xt), with <Yt> = U

» Autocovariance:

Ry (It —sl) = (Ve — ) (Ys — 1))

» Autocorrelation: py(t) = Ry(t)/Ry(0)

P Integrated autocorrelation time:
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Recall the Central Limit Theorem (CLT): if o, pu < o0, then
distribution of the sample mean S, approaches a gaussian
lim_ps, (x) = Gauss(11, —=; x)
lim ps, (x) = Gauss(, ﬁ,x

The CLT is modified in the presence of autocorrelations!
» Need additional condition: 7y < o0

» CLT works as before but with modified variance

> ‘Effective statistics’ i = n/(27nt). Large autocorrelations are
a problem!



What we know:

» Ergodic chains have a unique stationary distribution

» Sampling from a chain in equilibirium behaves according to
the CLT.

> Confidence intervals, statistical errors reliably estimated using
the CLT accounting for autocorrelation

But how do we construct a chain with the desired limiting
distribution?!?



Detailed balance: easy way to calculate stationary distribution
ZX Mxypy = Px

> Finding eigenvectors of the Markov matrix M is difficult.

» If p, satisfies detailed balance:
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it is a stationary distribution.

» Need also that the chain is ergodic for Fundamental Limit
theorem to hold.



Common strategy: the Metropolis-Hastings algorithm

» Split application of M (update) into two steps: proposal and
acceptance.

» Propose a change according to hy,, accept this change with
probability a,.

» Markov (transition) matrix is now:

M. — hxyaxy7 X#y
Ly =
g 1- Zk;&x hkyakya X=Yy

» Detailed balance is satisfied if:

h
axy = min <1, Px yx>
Py hiy




» Assume a reversible proposal hyx = hyy:

. Px
axy = min <1, )
Py

> Assume py = %efs(x):

24y = min (1, e_AS) . AS=5(x)-S(y)
> If S(y) < S(x), always accept.
» If S(y) > S(x), sometimes accept.

Proposal must change state optimally:

> If too large: AS >> 0, low acceptance rate, large
autocorrelation.

» If too small: AS = 0, high acceptance rate, large
autocorrelation



Back to scalar field example. Recall:
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» Need a proposal step h(¢' + ¢) that is
> reversible: h(¢' <+ @) = h(¢p + &)
» Doesn't give large AS = S(¢') — S(¢)

» Local proposals are most efficient, but not generally applicable

» Global proposal: Hybrid Monte Carlo (HMC)
(Duane, Kennedy, Pendelton, Roweth ‘87)



Hybrid Monte Carlo (HMC):
> Add ‘conjugate’ degrees of freedom: m, € R

» Define the ‘Hamiltonian' of a combined configuration:
1 2
A(6.m) = 5 D+ S(0) = K(m) + V(9)
» Draw the 7, individually from a unit normal distribution.

» Evolve (¢, ) according to Hamilton's equations

dp.  IK dr, 9V

dt o 871')(’ dt 8¢x

for some trajectory length 7.

» Accept/Reject using AH = H(¢', ') — H(¢, 7) with
¢ = ¢(7) and ' = (7).



Numerical integration of Hamilton's equations:
» Divide trajectory length into N, steps € = 7/N;

» Simple but effective integrator (Leapfrog):

a0 =4 (5) 504 (5)
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with F(¢) = — 5.

» Reversible and symplectic scheme means small AH.

where

3

P> These steps can be generalized to create other reversible,
symplectic integrators. (Omelyan, Mryglod, Folk, ‘02)



» Second-order OMF (OMF2):
lonr2(€) = h (¢6) b (5 ) h ({1 = 2€}e) b (5 ) ha (€€)
Incredibly small errors result from £ = 0.1931833275037836.

» Fourth-order OMF (OMF4):

1-2)\

/OMF4(5) = Il (66) /2 < 6> /1 (Xﬁ) /2 ()\6) X

B (1~ 26— 20)6) b (A) h (xe) (1 ‘2”6) h (&)

Incredibly small(er) errors result from

¢ = 0.1931833275037836,
A = —0.02094333910398989,
x = 1.235692651138917.



Summary:

» MCMC is great for importance sampling large-dimensional
integrals with a non-seperable pdf

» Theorems allow for rigorous (in principle!) convergence and
error estimates

» Metropolis-Hastings propose/accept algorithm easily ensures
the desired limiting distribution

» HMC provides a global proposal step with a reasonable
acceptance rate.



