Making your life easier with git

Jakob van Santen
Zeuthen Data Science Seminar, 2022-02-17

HELMHOLTZ

Who is this talk for?

You, if:
* You have never heard of git.

* You have heard of git, and know you should be using it, but still keep files named analysis.py, analysis-
copy.py analysis-copy1.py, analysis-copy1-reallyfixedthistime.py, etc.

* You use git, but are overcome with dread every time you hit a merge conflict.
* You are a git ninja, and want to argue with me over "git pull --rebase".
Things you should get out of this talk:

* Why version control is important

* How to use basic git commands

* How to write useful commit messages

« What "git merge™ actually does, and how to face merge conflicts without fear

A collection of useful commands to try out

DESY. 2

What is git?

 Git is a version control system, a tool to track changes (mostly to text files).
» Git has been the standard version control system for ~5-10 years
» Tracking changes (with git) is good for:
* you, today:
« Know exactly what you changed since lunchtime.

* Never make negative progress. If you break everything, at the end of the day you can always revert to
the version you had this morning.

 you, in the future: why does my code behave differently than it did a month ago? What was | thinking
when | made this change?

» your colleagues: how exactly is my script different from yours?

DESY. 3

git jJargon

repository
» repository (noun): a group of files (and their histories) that :
are tracked together. Can be a single file, or 3.5M (Windows). main
« commit (noun): a snapshot of the files in the repository, along v
with a note and links to one or more parent commits. Identified ; HEAD
by a hash of its contents.
——

« working tree (noun): set of files on the filesystem, some of ;
which may not be tracked by git. _,_,_,
' e a

» checkout (verb): extract the contents of a given commit to the ; [.
working tree ’ ' '

 ref (noun): a short-hand name for a specific commit (hash)

« HEAD (noun): ref for the currently checked-out commit

» branch (noun): a ref (name) for the latest in a chain of
commits. The default branch is usually called "main." Adding a :
new commit to a branch updates the ref. 5 Add foo.py ~ Add barpy Editbarpy Editfoo.py

working tree

..

DESY. 4

Single-user git

Workflow: committing changes

DESY.

After editing files tracked in a git
repository,

« Step 0: determine what has changed,
and decide what you want to commit

» Step 1: stage files for commit

« Step 2: compose a [useful] commit
message and commit

« diff (noun): difference between two snapshots,
expressed as lines added (+) and lines removed (-)

» stage (verb): "git add” marks a file from the working
copy for inclusion in the next commit

« commit (verb): "git commit’ adds a new commit to the
current branch.

Step 0: decide what to commit

git status

"git status’ tells you

« Which branch you currently have
checked out

* How that branch relates to any remote-
tracking branches

» Which files in the working tree have
uncommitted changes

» Which files in the working tree are not
tracked at all

DESY. 7

Step 0: decide what to commit

git diff diff --git a/.gitignore b/.gitignore
index 620e424..70009bb 100644
-—— a/.gitignore

“git diff’ shows you the difference R Bt e

between two snapshots (with no
arguments, these are HEAD and the
working copy)

* +: line was added

- - line was removed diff --git a/conda-lock.yml b/conda-lock.yml
index 571c538..6e31e54 100644

« Changed lines are denoted by a --- a/conda-lock.yml
deletion (-) followed by an addition o Acon T oSk

(+)

« “git diff --word-diff° shows
differences within a line

« “git diff --stat” shows you how many
lines were changed per file

Step 1: prepare a commit
git add

"git add” marks a file from the working
tree for inclusion in the next commit

 “git diff no longer shows changes

* "git diff --staged’ shows staged
changes

 Edits you make after this point are
not staged unless you explicitly "git
add" again.

» Stage parts of files with e.g. "git add
--patch <file>"

DESY. 9

Step 2: compose a commit message

git commit

"git commit’ commits the staged

« By default, "git commit™ dumps you
into your default editor (usually vi) to
compose a commit message. Set
EDITOR in your environment if you
prefer a different editor.

« Alternatively, provide a commit
message directly with -m, e.g. "git
commit -m "lgnore notebook
products™

* "git diff --staged’ shows staged
changes

—— INSERT --

DESY.

Viewing history
git log
"git log” shows the commit history

» By default, "git log" lists history from
HEAD backwards. Pass a specific
ref to start there instead.

 "git log --oneline’ shows only the
subject line of each commit

 "git log --oneline --graph™ shows
branches

 "git show <ref>" shows the diff
between <ref>'s parent commit and
<ref>, e.g. "git show HEAD" shows
the diff of the last commit.

For the git ninja: what does "git show™ do with a merge commit?

DESY. 1 1

https://www.kernel.org/pub/software/scm/git/docs/git-diff-tree.html#_diff_format_for_merges

U sefu I Co m m it m essag es https://xked.com/1296 CC BY-NC 2.5

COMMENT DATE

Commit messages should tell the CREATED MAIN LOOP & TIMING CONTROL
reader (in order): ENABLED CONFIG FILE. PARSING

MISC BUGFIXES
« What a change does CODE ADDITIONS/EDITS

MORE CODE
« Why it is necessary HERE HAVE CODE.

. ARAAAAAA

* How it works ADKFISLKDFISDKLFT
There are a lot of rules floating mﬁmg ING LIORDS

around. How strictly you follow them
depends on whether you're writing for
you-in-the-future or collaborators on a
large, structured project.

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

Exercise: read commit messages you
wrote 2 months ago. Can you reason
about what each commit does from
the commit message alone?

DESY. 1 2

https://xkcd.com/1296
https://creativecommons.org/licenses/by-nc/2.5/
https://cbea.ms/git-commit/

Incremental commits

Sometimes you can't finish a change
in one sitting, or compose the perfect
commit message.

« Commit often, while you still
remember what a change means.
Avoid leaving changes in your
working copy at the end of the day.

 Git lets you combine and rewrite
commits after the fact

« "git commit --amend’ updates
(replaces!) the last commit

» "git rebase -i HEAD~5" edits the
last 5 commits

* Never change commits that have
been pushed to a remote!

DESY.

Branching, tagging, merging

Branches are cheap. Use a branch for any change you don't want to land on main right now.

* branch (noun): a ref (nhame) for the latest in a chain of frob
commits. You can have an arbitrary number of branches. The
default branch is usually called "main." Adding a new commit vV V

to a branch updates the ref. main

» tag (noun): a permanent ref (name) for a specific commit.

——

Usually used to mark a version that you want to keep for a

while (a “release”). New commits do not update a tag. ®_,_,

git checkout -b frob <:::>
—>

git commit -m "add freebs" freebs.txt

git tag vl
git commit -m "add froobles" froobles.txt
git checkout main

git merge frob

NB: since there is a direct path from C to F, git merges by moving the main ref (a fast-forward merge).

DESY. 1 4

3-way merges and conflict resolution

If anyone committed to main since frob diverged,
git performs a 3-way merge, using E, F, and their

nearest common ancestor C.
git calculates 2 diffs:
< ours:difiC E @***@@

* theirs: diff C F
and applies them in parallel: @

 If both ours and theirs contain the same
changes, apply one

* If ours touches a line that theirs leaves
unchanged, apply ours (and vice versa)

« If ours and theirs apply different changes, you
have a merge conflict. Don't panic!

DESY. 1 5

Conflict resolution

Merge conflicts have to be resolved
manually. Keep ours and theirs straight
and you'll be fine.

» Accept one side of the conflict with "git
checkout --ours <file>" or "git checkout --
theirs <file>"

 Alternatively, edit the file to keep only the
side of each conflict you want to keep

 Some IDEs/clients have tools to make
this easier

Advanced Merging in the Git Book has
more strategies for untangling merge
conflicts.

The longer a branch exists, the more
merge conflicts it can accumulate. Keep
the most common ancestor recent by
rebasing onto or merging the base branch.

DESY.

foo.txt — git-tutorial
= foo.txt ! X
£ foo.txt

i h line

another line
another one here

line
ange | Accept Incoming Ch:
rrent Change)

Change
HEAD (Cu
something else

and one more
frob (Incoming Change)

X femaint & @O0AO ¢ Blame Jakob van Santen (6 minutes ago) Plain Text (@ Prettier & [

Merge conflict highlighting in VSCode Merge tool in Fork

NB: a clean merge does not mean that the resulting
code is valid, text makes sense, etc., only that the diffs
from each side did not collide. Test a merge commit just
like any other, and amend as necessary.

16

https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging

Stashing changes

“git stash” shunts all changes (both
staged and unstaged) into a
temporary commit and resets the
working tree to HEAD. This can be
useful (sometimes, necessary) before
commands that change HEAD (e.g.
checkout, rebase).

 "git stash pop™ applies last stash to
the working tree

« "git stash list’ lists the stack of
stashes

. “git stash push <file1> <file2>"
stashes only the specified files

 "git stash push --patch’ stashes
parts of files

DESY. 1 7

When things go wrong
(base) jakobeznbidd Ampel-core % gitreflog |

Nuke-it-from-orbit git reset

The reference log (reflog) records
when references (HEAD, main, etc)
changed. Use it to un-do commits
[that you haven't pushed yet].

» "git reset --soft HEAD@{1} sets the
current branch tip to where it was 1
operation ago, but leaves the last
state in the working tree.

« "git reset --hard HEAD@{5} sets the
current branch tip, staging area, and
work tree to where they were 5
operations ago.

 "git reset --mixed main@{yesterday}
" sets the current branch tip to
where main was yesterday, and
stages any changes w.r.t. that
commit.

DESY. 1 8

Multi-user git

More jargon

Moving content between git's different areas

* init (verb): create an empty repository

« remote (noun): name for another repository (directory or |add > commit >
URL) that you can exchange commits with. The default : :
remote is "origin." For forked repositories, it is common to push
add the repository you forked from as "upstream." : : :

» clone (verb): create a local copy of a remote. The cloned © © © ©

repository is independent of the remote, and in principle :
co-equal. working index local remote

tree repo repo

 fetch (verb): download new commits from a remote

» pull (verb): fetch and integrate commits from remote : |
: clone, pull

» push (verb): add commits local commits to remote

» fork (noun): a (hosted) clone of a repository. Fork + PR is fetch
a common way to allow collaboration without direct .

commit access.

DESY. 20

Repository hosting

Who owns your remote?

GitHub GitLab

(gitlab.desy.de)

Free for personal use Hosted at DESY

~Everyone has a GitHub account Everyone at DESY has a GitLab account,

Free-t tories ~h b oli external users can get one via Helmholtz AAI
ree-lier repositories ~have 1o be public (eduGAIN/ORCID/GitHub/Google)

Your personal repositories are associated with
you, personally. Not great for discoverability or
long-term preservation.

~Unlimited private repositories, CI/CD
pipelines, package hosting, etc.

Can use groups to organize related
repositories for better discoverability and
preservation

What happens when Microsoft decide they
need GitHub to actually make money?

Otherwise, similar features. Consider using DESY GitLab for new work.

DESY. 2 1

http://gitlab.desy.de
https://login.helmholtz.de

Collaboration workflows

Pull/Merge Requests let you propose, test, and discuss
changes before integrating them. How heavily you use
them depends on how large and complicated your project
iS.

« Commit directly to main if you have <=3
collaborators, no automated testing, and no non-
developer users

 Make a branch in the same repo and create a PR if
you have > 3 collaborators, or automated testing in
place, or have non-developer users

 Make a branch in a fork of the repo and create a PR
if your collaborators are not known a priori

DESY.

A Pull Request on GitHub

o0 [+ < 0 B github.com tQ ¢ @ + »

= () &

[conda-incubator / conda-lock ' Public

<> Code @ Issues 24 19 Pull requests 3 (® Actions

Edit <> Code v Jump to bottom

Add unified lockfile, pip interoperability #124

mariusvniekerk merged 62 commits into conda-incubator:main from
jvansanten:unified-lockfile (5Jon 29 Nov 2021

Conversation 57 Commits 62 Checks 4 Files changed 27

a jvansanten commented on 11 Nov 2021 - edited ~ Contributor | <«

This PR does two major things that | have personally found useful:

1. Adds support for pip dependencies (See () Support solving for dependencies that
are only installable via pip #122)

2. Adds a structured, multi-platform lock file (See also {9 Allow customization and
extension of lockfile metadata headers #106, as well as () New lock file
format mamba-org/mamba#1209)

22

Rejected pushes

“git push” will fail if the remote branch
contains commits that the local branch
does not.

» This is normal when working on a
branch that other people commit to.

« "git pull --rebase” and try again.

Rebase resolves conflicts the same way as merge, but with the meaning of "ours" and "theirs" reversed.

Sometimes you need to force-push, e.g. after rebasing a branch that only you work on. Never, ever force-push to a branch that someone else could have seen in the mean time. It is a good idea to
to turn on branch protections (GitHub, GitLab) to prevent yourself or anyone else from force-pushing accidentally.

DESY. 23

https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://nitaym.github.io/ourstheirs/

Keep your history readable

with "git pull --rebase’

"git pull” merges origin/main with main by default.

This is rarely what you actually want.

 “git pull --rebase’ reapplies local commits on
top of the remote branch tip, creating a linear
history

» Reserve merges for branches that diverged on
purpose.

» Set the correct default with "git config --global
pull.rebase true’

» Corollary: on a forked repository, keep main
identical to upstream/main. Never commit
directly to the default branch.

It is surprisingly hard to prevent trivial merge commits if you let people push directly. The

closest you can get is to protect your default branch and require PRs to be closed via
squash or rebase.

DESY.

History cluttered with unnecessary merge commits

eoe M- < @ ©

O Search or jump to...

github.com

& AmpelProject / Ampel-contrib-HU

Private

<> Code © Issues 1 1 Pullrequests 1 (® Actions

¥ master ~

-0- Commits on Aug 28, 2018

= >

Merge branch 'master’ of https://github.com/AmpelProject/Ampel-contri...
3 wombaugh committed on 28 Aug 2018

updated channel info, incl FIXME
¥ wombaugh committed on 28 Aug 2018

Work gracefully with a mock db
© ivansanten committed on 28 Aug 2018

reduced search radius to 1 arcsec
MatteoGiomi committed on 28 Aug 2018

* Merge branch 'master’ of https://github.com/AmpelProject/ampel-contri...
MatteoGiomi committed on 28 Aug 2018
logging for no matches

MatteoGiomi committed on 28 Aug 2018

-0~ Commits on Aug 27, 2018

=

Merge branch 'master’ of https://github.com/AmpelProject/Ampel-contri...
f-j wombaugh committed on 27 Aug 2018

new t2 output syntax
f-j wombaugh committed on 27 Aug 2018

nested t2 result test

- R

Pulls Issues Marketplace Explore

® Unwatch 12 ~ % Fork

3 Projects

5+~ @&~

Yy Star 0

@ Security

fbcobl7

208aale

5bf2078

ba6618e

c083clb

5fe697b

ofccle9

dfce4ab

2

<>

<>

<>

<>

<>

<>

<>

oo
[[=]

with “git pull’

trivial
\ merge
trivial
merge
with “git pull
° --rebase’

OnOpOnOM0

24

Tidbits

Single-use repositories

Whenever you get a random tar archive that you want to change, commit its Use GitHub Gists / GitLab Snippets to share bits of code and text
contents to a throw-away repository so you can track exactly what you change.

eoe - <) gist.github.com @ ¢, O M + =

GitHub Gist @ Search... All gists Back to GitHub

& jvansanten / nuflux knee demo.ipynb 2 Edit iJ Delete V¢ Star 0

Created 7 months ago

<> Code -O- Revisions 1 [54] Download ZIP

diff —-git a/ZTF18aajjhkq_salt2_NEDz_fit.svg b/ZTF18aajjhkq_salt2_NEDz_fit.svg (2] nuflux knee demo.ipynb O 0O Raw

index 168711d..13f74e2 100644
—-—— a/ZTFl8aajjhkq_salt2_NEDz_fit.svg
+++ b/ZTF18aajjhkq_salt2_NEDz_fit.svg import nuflux

import matplotlib.pyplot as plt
import numpy as np

nuflux.availableFluxes()

['BERSS_H3a_central',
'BERSS_H3p_central',
'BERSS_H3p_lower',
'BERSS_H3p_upper',

'CORSIKA GaisserH3a_QGSJET-II',
'CORSIKA_ GaisserH3a_ SIBYLL-2.1',
'CORSIKA GaisserH3a_average',
'H3a_SIBYLL21',

'H3a_SIBYLL21 KO',

'H3a_SIBYLL21_KOL',
'H3a_SIBYLL21 KOS',
'H3a_SIBYLL21l conv',
'H3a_SIBYLL21 k',
'H3a_SIBYLL21 mu',
'H3a_SIBYLL21 pi',
'H3a_SIBYLL23C',

1119. crnurrasa Al

DESY. 26

Useful resources

Documentation, tutorials, and opinions

« Oh My Git: a game for learning git

» Git tutorials from Atlassian

 How to Write a Git Commit Message

* Git Pro: an exhaustive reference manual

« Plumbing and Porcelain: section on git internals

» Think like Git: great talk on git internals at PyData
2021

 What's a "detached HEAD" in Git?

 Regain Control of Branches with qit rebase --onto

» Ours & theirs in merge vs. rebase

» Writing a proper GitHub issue

DESY.

 Best Practices for Using GitHub Issues

« SSH key auth for GitHub and GitLab
« Why you should use a code formatter
GUI clients and IDEs

* Fork

 GitKraken

 Tower
e GitHub Desktop
 VSCode

27

https://ohmygit.org
https://www.atlassian.com/git/tutorials
https://cbea.ms/git-commit/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain
https://www.youtube.com/watch?v=rBYC3dEOOyI
https://www.git-tower.com/learn/git/faq/detached-head-when-checkout-commit
https://www.headway.io/blog/regain-control-of-branches-with-git-rebase-onto
https://nitaym.github.io/ourstheirs/
https://medium.com/nyc-planning-digital/writing-a-proper-github-issue-97427d62a20f
https://www.backhub.co/blog/best-practices-for-using-github-issues
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiwst3AgIL2AhVJRvEDHeFGDVAQFnoECBAQAQ&url=https://docs.github.com/en/authentication/connecting-to-github-with-ssh&usg=AOvVaw0ObLt130kJ7y4IwQ-069jU
https://docs.gitlab.com/ee/ssh/
https://medium.com/@ryconoclast/why-you-should-use-a-code-formatter-4f02dd40db14
https://git-fork.com
https://www.gitkraken.com
https://www.git-tower.com
https://desktop.github.com
https://code.visualstudio.com

Best practices

» Keep as much of your work as possible in git.

« Commit early, commit often. Fix up incremental commits as you go.

Push finished work to a remote.

Write useful commit messages that communicate the what, why, and how of a change (in that order).

Keep branches short-lived. If you need long-lived branches, rebase or merge often to keep the common
ancestor recent.

“git config --global pull.rebase true’ (do it now)

Never commit to the default branch of a forked repository.

DESY. 28

Thank you

Git glossary

repository (noun): a group of files that are tracked together. Can
be a single file, or 3.5M (Windows).

commit (noun): a snapshot of the repository (files and contents),
along with a note and links to one or more parent commits.
Identified by a hash.

working copy (noun): set of files on the filesystem, not
necessarily tracked by git

checkout (verb): extract the contents of a given commit to the
working copy

ref (noun): a short-hand name for a specific commit (hash)
HEAD (noun): ref for the currently checked-out commit

branch (noun): a ref (name) for the latest in a chain of commits.
The default branch is usually called "main." Adding a new commit
to a branch updates the ref.

tag (noun): a permanent ref (name) for a specific commit. Usually
used to mark a version that you want to keep for a while (a
“release”). New commits do not update a tag.

diff (noun): difference between two snapshots, expressed as lines
added (+) and lines removed (-)

stage (verb): "git add” marks a file from the working copy for
inclusion in the next commit

commit (verb): "git commit’ adds a new commit to the current
branch.

init (verb): create an empty repository

DESY.

remote (noun): name for another repository (directory or URL)
that you can exchange commits with. The default remote is
"origin." For forked repositories, it is common to add the repository
you forked from as "upstream."

clone (verb): create a local copy of a remote

fetch (verb): download new commits from a remote

pull (verb): fetch and integrate commits from remote

push (verb): add commits local commits to remote

fork (noun): a (hosted) clone of a repository. Fork + PR is a
common way to allow collaboration without direct commit access.
amend (verb): edit the latest commit to change its message or
content

rebase (verb): transplant a range of commits from one base
commit to another.

squash (verb): combine a range of commits

fixup (noun): a (usually small) commit that fixes problems
introduced by some other commit. Should usually be squashed
into that other commit.

cherry-pick (verb): copy a single commit from one branch to
another (precisely: apply the diff between a commit and its parent
to the current branch)

30

Contact

Deutsches Elektronen- Name Surname
Synchrotron DESY Department
E-mail

www.desy.de Phone

