
Making your life easier with git

Jakob van Santen
Zeuthen Data Science Seminar, 2022-02-17

DESY. 2

Who is this talk for?

You, if:

• You have never heard of git.

• You have heard of git, and know you should be using it, but still keep files named analysis.py, analysis-
copy.py analysis-copy1.py, analysis-copy1-reallyfixedthistime.py, etc.

• You use git, but are overcome with dread every time you hit a merge conflict.

• You are a git ninja, and want to argue with me over `git pull --rebase`.

Things you should get out of this talk:

• Why version control is important

• How to use basic git commands

• How to write useful commit messages

• What `git merge` actually does, and how to face merge conflicts without fear

• A collection of useful commands to try out

DESY. 3

What is git?

• Git is a version control system, a tool to track changes (mostly to text files).

• Git has been the standard version control system for ~5-10 years

• Tracking changes (with git) is good for:

• you, today:

• Know exactly what you changed since lunchtime.

• Never make negative progress. If you break everything, at the end of the day you can always revert to
the version you had this morning.

• you, in the future: why does my code behave differently than it did a month ago? What was I thinking
when I made this change?

• your colleagues: how exactly is my script different from yours?

DESY. 4

git jargon

• repository (noun): a group of files (and their histories) that
are tracked together. Can be a single file, or 3.5M (Windows).

• commit (noun): a snapshot of the files in the repository, along
with a note and links to one or more parent commits. Identified
by a hash of its contents.

• working tree (noun): set of files on the filesystem, some of
which may not be tracked by git.

• checkout (verb): extract the contents of a given commit to the
working tree

• ref (noun): a short-hand name for a specific commit (hash)

• HEAD (noun): ref for the currently checked-out commit

• branch (noun): a ref (name) for the latest in a chain of
commits. The default branch is usually called "main." Adding a
new commit to a branch updates the ref.

91d9b
de8

bf478
d4a

a24f1
618

89d26
b9d

foo.py

bar.py

HEAD

main

foo.py foo.py

bar.py

foo.py

bar.py

Add foo.py Add bar.py Edit bar.py

repository

working tree

Edit foo.py

Single-user git

DESY. 6

Workflow: committing changes

• diff (noun): difference between two snapshots,
expressed as lines added (+) and lines removed (-)

• stage (verb): `git add` marks a file from the working
copy for inclusion in the next commit

• commit (verb): `git commit` adds a new commit to the
current branch.

After editing files tracked in a git
repository,

• Step 0: determine what has changed,
and decide what you want to commit

• Step 1: stage files for commit

• Step 2: compose a [useful] commit
message and commit

DESY. 7

Step 0: decide what to commit
git status

(base) jakob@znb140 gen2-analysis % git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: .gitignore
 modified: conda-lock.yml
 modified: figures/toise.mplstyle
 modified: toise/figures/pointsource/flare.py

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 5eff16a895f6287eeaf9674e60d751a9/
 notebooks/data preparation/Neutrino physics.ipynb
 pyproject.toml.bak
 toise/notebooks/

no changes added to commit (use "git add" and/or "git commit -a")

`git status` tells you

• Which branch you currently have
checked out

• How that branch relates to any remote-
tracking branches

• Which files in the working tree have
uncommitted changes

• Which files in the working tree are not
tracked at all

DESY. 8

Step 0: decide what to commit
git diff

(base) jakob@znb140 gen2-analysis % git diff --stat
 .gitignore | 4 +
 conda-lock.yml | 7580 ++++++++++++++++++++----------------
 figures/toise.mplstyle | 2 +
 toise/figures/pointsource/flare.py | 1 +
 4 files changed, 4166 insertions(+), 3421 deletions(-)

`git diff` shows you the difference
between two snapshots (with no
arguments, these are HEAD and the
working copy)

• +: line was added

• -: line was removed

• Changed lines are denoted by a
deletion (-) followed by an addition
(+)

• `git diff --word-diff` shows
differences within a line

• `git diff --stat` shows you how many
lines were changed per file

diff --git a/.gitignore b/.gitignore
index 620e424..70009bb 100644
--- a/.gitignore
+++ b/.gitignore
@@ -4,3 +4,7 @@
 data/
 figures/**/*.json.gz
 figures/**/*.pdf
+notebooks/**/*.pdf
+notebooks/**/*.fits
+notebooks/**/.ipynb_checkpoints
+.vscode
diff --git a/conda-lock.yml b/conda-lock.yml
index 571c538..6e31e54 100644
--- a/conda-lock.yml
+++ b/conda-lock.yml
@@ -37,828 +37,690 @@ package:
 url: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-
conda_forge.tar.bz2
 version: '0.1'
 - category: main
- dependencies:
- _libgcc_mutex: 0.1 conda_forge
- libgomp: '>=7.5.0'

DESY. 9

Step 1: prepare a commit
git add

(base) jakob@znb140 gen2-analysis % git diff --stat
 conda-lock.yml | 7580 ++++++++++++++++++++----------------
 figures/toise.mplstyle | 2 +
 toise/figures/pointsource/flare.py | 1 +
 3 files changed, 4162 insertions(+), 3421 deletions(-)
(base) jakob@znb140 gen2-analysis % git diff --stat --staged
 .gitignore | 4 ++++
 1 file changed, 4 insertions(+)

`git add` marks a file from the working
tree for inclusion in the next commit

• `git diff` no longer shows changes

• `git diff --staged` shows staged
changes

• Edits you make after this point are
not staged unless you explicitly `git
add` again.

• Stage parts of files with e.g. `git add
--patch <file>`

(base) jakob@znb140 gen2-analysis % git add .gitignore
(base) jakob@znb140 gen2-analysis % git status
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: .gitignore

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: conda-lock.yml
 modified: figures/toise.mplstyle
 modified: toise/figures/pointsource/flare.py

DESY. 10

Step 2: compose a commit message
git commit

Ignore notebook products
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.

On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
modified: .gitignore

Changes not staged for commit:
modified: conda-lock.yml
modified: figures/toise.mplstyle
modified: toise/figures/pointsource/flare.py

Untracked files:
5eff16a895f6287eeaf9674e60d751a9/
notebooks/data preparation/Neutrino physics.ipynb
pyproject.toml.bak
toise/notebooks/

~
~
~
-- INSERT --

`git commit` commits the staged
snapshot to the repository

• By default, `git commit` dumps you
into your default editor (usually vi) to
compose a commit message. Set
EDITOR in your environment if you
prefer a different editor.

• Alternatively, provide a commit
message directly with -m, e.g. `git
commit -m "Ignore notebook
products"`

• `git diff --staged` shows staged
changes

(base) jakob@znb140 gen2-analysis % git commit .gitignore
[master ac305d3] Ignore notebook products
 1 file changed, 4 insertions(+)

DESY. 11

Viewing history
git log

commit 18a82ec2e3fc9697b474dc6bb1728bbd6d15239d (HEAD -> master)
Author: Jakob van Santen <jvansanten@gmail.com>
Date: Thu Feb 10 11:20:16 2022 +0100

 Ignore notebook products

commit 08587c2b49933c305ee0d030af61734aa2553f51 (origin/master, origin/HEAD)
Author: Jakob van Santen <jvansanten@gmail.com>
Date: Thu Jan 27 15:45:59 2022 +0100

 Add license, with pointers to bundled components

commit c691b1f825c478888604b5aa67d1a0af62bc33bf
Author: Jakob van Santen <jvansanten@gmail.com>
Date: Thu Jan 27 14:13:05 2022 +0100

 Make duration settable in flare plot

commit efe4fddc73b4a62d8a41baa7a1b840068a773d60
Author: Jakob van Santen <jvansanten@gmail.com>
Date: Fri Jan 14 16:11:00 2022 +0100

 Use annotations for fancier cli

:

`git log` shows the commit history

• By default, `git log` lists history from
HEAD backwards. Pass a specific
ref to start there instead.

• `git log --oneline` shows only the
subject line of each commit

• `git log --oneline --graph` shows
branches

• `git show <ref>` shows the diff
between <ref>'s parent commit and
<ref>, e.g. `git show HEAD` shows
the diff of the last commit.

(base) jakob@znb140 gen2-analysis % git log

For the git ninja: what does `git show` do with a merge commit?

https://www.kernel.org/pub/software/scm/git/docs/git-diff-tree.html#_diff_format_for_merges

DESY. 12

Useful commit messages https://xkcd.com/1296 CC BY-NC 2.5

Commit messages should tell the
reader (in order):

• What a change does

• Why it is necessary

• How it works

There are a lot of rules floating
around. How strictly you follow them
depends on whether you're writing for
you-in-the-future or collaborators on a
large, structured project.

Exercise: read commit messages you
wrote 2 months ago. Can you reason
about what each commit does from
the commit message alone?

commit bf478d4a4fd82dfe6d23c4b4ada0aeef3023819c
Author: Redacted Ralph <YYYYYYYYYYYY@gmail.com>
Date: Fri Jan 21 15:06:11 2022 +0100

 UnitLoader: resolve secrets for AmpelBaseModel subclasses

 AmpelBaseModel subclasses have direct annotations in __annotations__,
 but annotations of superclasses in _annots. Look for secrets in
 _annots to allow secret fields to be defined in base classes, even
 with multiple inheritance.

https://xkcd.com/1296
https://creativecommons.org/licenses/by-nc/2.5/
https://cbea.ms/git-commit/

DESY. 13

Incremental commits

Sometimes you can't finish a change
in one sitting, or compose the perfect
commit message.

• Commit often, while you still
remember what a change means.
Avoid leaving changes in your
working copy at the end of the day.

• Git lets you combine and rewrite
commits after the fact

• `git commit --amend` updates
(replaces!) the last commit

• `git rebase -i HEAD~5` edits the
last 5 commits

• Never change commits that have
been pushed to a remote!

pick e0c2987 make uniform how units are put in figures, [vs (, and also, make
sure the number of radio stations is 30 everywhere
pick efe4fdd Use annotations for fancier cli
pick c691b1f Make duration settable in flare plot
pick 08587c2 Add license, with pointers to bundled components
pick 18a82ec Ignore notebook products

Rebase e135507..18a82ec onto e135507 (5 commands)

Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like "squash", but discard this commit's log message
x, exec <command> = run command (the rest of the line) using shell
b, break = stop here (continue rebase later with 'git rebase --continue')
d, drop <commit> = remove commit
l, label <label> = label current HEAD with a name
t, reset <label> = reset HEAD to a label
m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]
. create a merge commit using the original merge commit's
. message (or the oneline, if no original merge commit was
. specified). Use -c <commit> to reword the commit message.
<Cube/projects/2021/gen2-analysis/.git/rebase-merge/git-rebase-todo" 30L, 1417B

(base) jakob@znb140 gen2-analysis % git rebase -i HEAD~5
Successfully rebased and updated refs/heads/master.

DESY. 14

Branching, tagging, merging
Branches are cheap. Use a branch for any change you don't want to land on main right now.

• branch (noun): a ref (name) for the latest in a chain of
commits. You can have an arbitrary number of branches. The
default branch is usually called "main." Adding a new commit
to a branch updates the ref.

• tag (noun): a permanent ref (name) for a specific commit.
Usually used to mark a version that you want to keep for a
while (a “release”). New commits do not update a tag. A B C

E F

HEAD

main

frob

v1

git checkout -b frob

git commit -m "add freebs" freebs.txt

git tag v1

git commit -m "add froobles" froobles.txt

git checkout main

git merge frob

NB: since there is a direct path from C to F, git merges by moving the main ref (a fast-forward merge).

DESY. 15

3-way merges and conflict resolution

A B C

D F

main

frob G

If anyone committed to main since frob diverged,
git performs a 3-way merge, using E, F, and their
nearest common ancestor C.

git calculates 2 diffs:

• ours: diff C E

• theirs: diff C F

and applies them in parallel:

• If both ours and theirs contain the same
changes, apply one

• If ours touches a line that theirs leaves
unchanged, apply ours (and vice versa)

• If ours and theirs apply different changes, you
have a merge conflict. Don't panic!

E

DESY. 16

Conflict resolution

Merge conflicts have to be resolved
manually. Keep ours and theirs straight
and you'll be fine.

• Accept one side of the conflict with `git
checkout --ours <file>` or `git checkout --
theirs <file>`

• Alternatively, edit the file to keep only the
side of each conflict you want to keep

• Some IDEs/clients have tools to make
this easier

Advanced Merging in the Git Book has
more strategies for untangling merge
conflicts.

The longer a branch exists, the more
merge conflicts it can accumulate. Keep
the most common ancestor recent by
rebasing onto or merging the base branch.

(base) jakob@znb140 git-tutorial % git merge frob
Auto-merging foo.txt
CONFLICT (content): Merge conflict in foo.txt
Automatic merge failed; fix conflicts and then commit the result.

Merge conflict highlighting in VSCode Merge tool in Fork

NB: a clean merge does not mean that the resulting
code is valid, text makes sense, etc., only that the diffs
from each side did not collide. Test a merge commit just
like any other, and amend as necessary.

https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging

DESY. 17

Stashing changes

`git stash` shunts all changes (both
staged and unstaged) into a
temporary commit and resets the
working tree to HEAD. This can be
useful (sometimes, necessary) before
commands that change HEAD (e.g.
checkout, rebase).

• `git stash pop` applies last stash to
the working tree

• `git stash list` lists the stack of
stashes

• `git stash push <file1> <file2>`
stashes only the specified files

• `git stash push --patch` stashes
parts of files

(base) jakob@znb140 gen2-analysis % git status -s
 M conda-lock.yml
 M figures/toise.mplstyle
 M toise/figures/pointsource/flare.py
(base) jakob@znb140 gen2-analysis % git stash
Saved working directory and index state WIP on master: 18a82ec Ignore notebook
products
(base) jakob@znb140 gen2-analysis % git status -s
(base) jakob@znb140 gen2-analysis % git stash pop -q
(base) jakob@znb140 gen2-analysis % git status -s
 M conda-lock.yml
 M figures/toise.mplstyle
 M toise/figures/pointsource/flare.py

DESY. 18

When things go wrong
Nuke it from orbit git reset

The reference log (reflog) records
when references (HEAD, main, etc)
changed. Use it to un-do commits
[that you haven't pushed yet].

• `git reset --soft HEAD@{1}` sets the
current branch tip to where it was 1
operation ago, but leaves the last
state in the working tree.

• `git reset --hard HEAD@{5}` sets the
current branch tip, staging area, and
work tree to where they were 5
operations ago.

• `git reset --mixed main@{yesterday}
` sets the current branch tip to
where main was yesterday, and
stages any changes w.r.t. that
commit.

156bbef3 (HEAD -> dev/v0.8.2, tag: v0.8.2-alpha.10, origin/dev/v0.8.2)
HEAD@{0}: commit: Bump version
bd1ee73f HEAD@{1}: rebase (finish): returning to refs/heads/dev/v0.8.2
bd1ee73f HEAD@{2}: rebase (pick): test: server reload_config
1ae3ecf2 HEAD@{3}: rebase (pick): AbsOpsUnit: mark logger as traceless
518e5822 HEAD@{4}: rebase (pick): UnitLoader: do not mutate UnitModel on
validation
f9b8fd3b HEAD@{5}: rebase (fixup): AbsEventUnit: mark process_name traceless
6027a307 HEAD@{6}: rebase (start): checkout
91d9bde8b8cc30f4b8d9387217bbaabe249990e9
9cc8e1a4 HEAD@{7}: commit: test: server reload_config
6a21985e HEAD@{8}: commit: fixup! AbsEventUnit: mark process_name traceless
cba45cf7 HEAD@{9}: commit: AbsOpsUnit: mark logger as traceless
e927e881 HEAD@{10}: commit: UnitLoader: do not mutate UnitModel on validation
6027a307 HEAD@{11}: commit: AbsEventUnit: mark process_name traceless
91d9bde8 (tag: v0.8.2-alpha.9) HEAD@{12}: rebase (finish): returning to refs/
heads/dev/v0.8.2
91d9bde8 (tag: v0.8.2-alpha.9) HEAD@{13}: rebase (start): checkout HEAD~5
91d9bde8 (tag: v0.8.2-alpha.9) HEAD@{14}: reset: moving to HEAD
91d9bde8 (tag: v0.8.2-alpha.9) HEAD@{15}: commit: Bump version
bf478d4a HEAD@{16}: commit (amend): UnitLoader: resolve secrets for
AmpelBaseModel subclasses
01513bbf HEAD@{17}: commit (amend): UnitLoader: resolve secrets for
AmpelBaseModel subclasses
:

(base) jakob@znb140 Ampel-core % git reflog

Multi-user git

DESY. 20

More jargon

• init (verb): create an empty repository

• remote (noun): name for another repository (directory or
URL) that you can exchange commits with. The default
remote is "origin." For forked repositories, it is common to
add the repository you forked from as "upstream."

• clone (verb): create a local copy of a remote. The cloned
repository is independent of the remote, and in principle
co-equal.

• fetch (verb): download new commits from a remote

• pull (verb): fetch and integrate commits from remote

• push (verb): add commits local commits to remote

• fork (noun): a (hosted) clone of a repository. Fork + PR is
a common way to allow collaboration without direct
commit access.

remote
repo

local
repo

indexworking
tree

push

clone, pull

fetch

commitadd

Moving content between git's different areas

DESY. 21

Repository hosting
Who owns your remote?

(gitlab.desy.de)

Free for personal use

~Everyone has a GitHub account

Free-tier repositories ~have to be public

Your personal repositories are associated with
you, personally. Not great for discoverability or
long-term preservation.

What happens when Microsoft decide they
need GitHub to actually make money?

Hosted at DESY

Everyone at DESY has a GitLab account,
external users can get one via Helmholtz AAI
(eduGAIN/ORCID/GitHub/Google)

~Unlimited private repositories, CI/CD
pipelines, package hosting, etc.

Can use groups to organize related
repositories for better discoverability and
preservation

Otherwise, similar features. Consider using DESY GitLab for new work.

http://gitlab.desy.de
https://login.helmholtz.de

DESY. 22

Collaboration workflows

A Pull Request on GitHubPull/Merge Requests let you propose, test, and discuss
changes before integrating them. How heavily you use
them depends on how large and complicated your project
is.

• Commit directly to main if you have <= 3
collaborators, no automated testing, and no non-
developer users

• Make a branch in the same repo and create a PR if
you have > 3 collaborators, or automated testing in
place, or have non-developer users

• Make a branch in a fork of the repo and create a PR
if your collaborators are not known a priori

DESY. 23

Rejected pushes

(base) jakob@znb140 gen2-analysis % git push
To github.com:icecube/gen2-analysis.git
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'github.com:icecube/gen2-analysis.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

`git push` will fail if the remote branch
contains commits that the local branch
does not.

• This is normal when working on a
branch that other people commit to.

• `git pull --rebase` and try again.

Sometimes you need to force-push, e.g. after rebasing a branch that only you work on. Never, ever force-push to a branch that someone else could have seen in the mean time. It is a good idea to
to turn on branch protections (GitHub, GitLab) to prevent yourself or anyone else from force-pushing accidentally.

Rebase resolves conflicts the same way as merge, but with the meaning of "ours" and "theirs" reversed.

https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://nitaym.github.io/ourstheirs/

DESY. 24

Keep your history readable
with `git pull --rebase`

`git pull` merges origin/main with main by default.
This is rarely what you actually want.

• `git pull --rebase` reapplies local commits on
top of the remote branch tip, creating a linear
history

• Reserve merges for branches that diverged on
purpose.

• Set the correct default with `git config --global
pull.rebase true`

• Corollary: on a forked repository, keep main
identical to upstream/main. Never commit
directly to the default branch.

A

C

D

E

B

F

G

A

C

B

E

F

with `git pull`

with `git pull
--rebase`

trivial
merge

History cluttered with unnecessary merge commits

trivial
merge

It is surprisingly hard to prevent trivial merge commits if you let people push directly. The
closest you can get is to protect your default branch and require PRs to be closed via
squash or rebase.

Tidbits

DESY. 26

Single-use repositories

Use GitHub Gists / GitLab Snippets to share bits of code and text

(base) jakob@znb140 sncosmo % git init
Initialized empty Git repository in /Users/jakob/Downloads/sncosmo/.git/
(base) jakob@znb140 sncosmo % git add .
(base) jakob@znb140 sncosmo % git commit -m 'initial commit'
[main (root-commit) a7c3642] initial commit
 19 files changed, 51993 insertions(+)
 create mode 100644 ZTF18aajjhkq_salt2_NEDz_fit.svg
 create mode 100644 ZTF18abwitkf_salt2_NEDz_fit.svg
 create mode 100644 ZTF21aaaadmo_salt2_NEDz_fit.svg
(base) jakob@znb140 sncosmo % vi ZTF18aajjhkq_salt2_NEDz_fit.svg
(base) jakob@znb140 sncosmo % git diff
diff --git a/ZTF18aajjhkq_salt2_NEDz_fit.svg b/ZTF18aajjhkq_salt2_NEDz_fit.svg
index 168711d..13f74e2 100644
--- a/ZTF18aajjhkq_salt2_NEDz_fit.svg
+++ b/ZTF18aajjhkq_salt2_NEDz_fit.svg
@@ -11,7 +11,7 @@
 <dc:format>image/svg+xml</dc:format>
 <dc:creator>
 <cc:Agent>
- <dc:title>Matplotlib v3.3.3, https://matplotlib.org/</dc:title>
+ <dc:title>Matplotlib v3.3.8, https://matplotlib.org/</dc:title>
 </cc:Agent>
 </dc:creator>
 </cc:Work>

Whenever you get a random tar archive that you want to change, commit its
contents to a throw-away repository so you can track exactly what you change.

DESY. 27

Useful resources

Documentation, tutorials, and opinions

• Oh My Git: a game for learning git

• Git tutorials from Atlassian

• How to Write a Git Commit Message

• Git Pro: an exhaustive reference manual

• Plumbing and Porcelain: section on git internals

• Think like Git: great talk on git internals at PyData
2021

• What's a "detached HEAD" in Git?

• Regain Control of Branches with git rebase --onto

• Ours & theirs in merge vs. rebase

• Writing a proper GitHub issue

• Best Practices for Using GitHub Issues

• SSH key auth for GitHub and GitLab

• Why you should use a code formatter

GUI clients and IDEs

• Fork

• GitKraken

• Tower

• GitHub Desktop

• VSCode

https://ohmygit.org
https://www.atlassian.com/git/tutorials
https://cbea.ms/git-commit/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain
https://www.youtube.com/watch?v=rBYC3dEOOyI
https://www.git-tower.com/learn/git/faq/detached-head-when-checkout-commit
https://www.headway.io/blog/regain-control-of-branches-with-git-rebase-onto
https://nitaym.github.io/ourstheirs/
https://medium.com/nyc-planning-digital/writing-a-proper-github-issue-97427d62a20f
https://www.backhub.co/blog/best-practices-for-using-github-issues
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiwst3AgIL2AhVJRvEDHeFGDVAQFnoECBAQAQ&url=https://docs.github.com/en/authentication/connecting-to-github-with-ssh&usg=AOvVaw0ObLt130kJ7y4IwQ-069jU
https://docs.gitlab.com/ee/ssh/
https://medium.com/@ryconoclast/why-you-should-use-a-code-formatter-4f02dd40db14
https://git-fork.com
https://www.gitkraken.com
https://www.git-tower.com
https://desktop.github.com
https://code.visualstudio.com

DESY. 28

Best practices

• Keep as much of your work as possible in git.

• Commit early, commit often. Fix up incremental commits as you go.

• Push finished work to a remote.

• Write useful commit messages that communicate the what, why, and how of a change (in that order).

• Keep branches short-lived. If you need long-lived branches, rebase or merge often to keep the common
ancestor recent.

• `git config --global pull.rebase true` (do it now)

• Never commit to the default branch of a forked repository.

Thank you

DESY. 30

Git glossary

• repository (noun): a group of files that are tracked together. Can
be a single file, or 3.5M (Windows).

• commit (noun): a snapshot of the repository (files and contents),
along with a note and links to one or more parent commits.
Identified by a hash.

• working copy (noun): set of files on the filesystem, not
necessarily tracked by git

• checkout (verb): extract the contents of a given commit to the
working copy

• ref (noun): a short-hand name for a specific commit (hash)
• HEAD (noun): ref for the currently checked-out commit
• branch (noun): a ref (name) for the latest in a chain of commits.

The default branch is usually called "main." Adding a new commit
to a branch updates the ref.

• tag (noun): a permanent ref (name) for a specific commit. Usually
used to mark a version that you want to keep for a while (a
“release”). New commits do not update a tag.

• diff (noun): difference between two snapshots, expressed as lines
added (+) and lines removed (-)

• stage (verb): `git add` marks a file from the working copy for
inclusion in the next commit

• commit (verb): `git commit` adds a new commit to the current
branch.

• init (verb): create an empty repository

• remote (noun): name for another repository (directory or URL)
that you can exchange commits with. The default remote is
"origin." For forked repositories, it is common to add the repository
you forked from as "upstream."

• clone (verb): create a local copy of a remote
• fetch (verb): download new commits from a remote
• pull (verb): fetch and integrate commits from remote
• push (verb): add commits local commits to remote
• fork (noun): a (hosted) clone of a repository. Fork + PR is a

common way to allow collaboration without direct commit access.
• amend (verb): edit the latest commit to change its message or

content
• rebase (verb): transplant a range of commits from one base

commit to another.
• squash (verb): combine a range of commits
• fixup (noun): a (usually small) commit that fixes problems

introduced by some other commit. Should usually be squashed
into that other commit.

• cherry-pick (verb): copy a single commit from one branch to
another (precisely: apply the diff between a commit and its parent
to the current branch)

Contact

Deutsches Elektronen-
Synchrotron DESY

www.desy.de

Name Surname
Department
E-mail
Phone

