

dCache's automated build and
test-approach

Owen Synge
DCache Team member

About this talk

● Lots of components
– Automated Build
– Automated Install
– Functional Test suite

● Why is it important?
● What is the process?
● How do we do it?

Why is automated build and
test important ?

● Reduces bugs, support and effort.
– More true the more sites you deploy too.

● Reduces errors.
– Lots of little error prone steps.

● Speeds development.
– Reduces test release times.

● Improves releases
– More is tested.

D-Cache Build Service Purpose

● Build service for Dcache and Desy Code
– No more it builds on my machine.
– Reproducible builds

● For external collaborators
● Secure and up to date build environment

– No more need to check build environment
– Fresh OS for each build.

● 1st Stage of automation
– Do this first!

Implementation/Tools Reused

● Implementation.
– Utilizes SVN/CVS,Busyb,yum/apt-get XEN and

xen-image-manger.py
● Code

– Modular and simple python scripts
● State

– Postgresql

Simplified Block Diagram Of Build Service

SVN

Postgresql Xen-image-manager.py

Yum/apt repository

Virtual Build Host
SL3/SL4

Build Output

1

2 & 6

3

4

5

7

1) CVS tag is published and script places into RDBMS
2) Database triggers system installation
3,4) New system is updated and build dependencies installed
5) Build state recorded in database
6,7) Packaged output made available

Build system “To Do” list.

● Parallel builds
● SL4 Support (possibly Solaris)
● Move to YUM

– For SL4 and dependability
● Move to SVN

– move away from CVS
● Publish output to web
● Auto generate OS images for Xen

– kickstart/rpmstrap?

Automated install
(Dcache YAIM)

● Required for Mass deployment
– Hand modification not practical

● Enables further automation
– integrate AutoBuild and Functional tests

● Makes deployment consistent
– Reduces support calls

● Speeds Testing
– 2 day job for fresh install (interactive)
– 30 min job (non interactive)

Automated install “To Do”

● Ports SL4 32/64bit and Solaris.
– SL3 is supported

● Support postgresql 8.2
– postgresql <= 8.1 supported

● Integrate into core of DCache.
– Move into DCache RPM

● Configurable logging levels.
● Taking OSG patches back to LSG code.
● Maintenance and support

Why a Functional Test Suite?

● Increases importance with functionality.
– but easier to start at beginning (XP coding)

● Reduces release issues.
– Consensus of admins is dcache releases are

much more consistent since we had this.
● Reduces testing time

– For DCache
● 1 day per release (interactive)
● 15 mins per release (not interactive)

● Increases developer speed.

Design

● Modular pluggable system
– Using python
– Modules Tagged (self describing)

● Allow tests to be run by filter.
● Command line interface

– All tests or individual tests can be run
● Web interface

– Calls command line from busyb making web
page

Functional test suite “To Do”

● Publish web output
– We have now changed internal services so no

longer blocked on this.
● Add to CERN's “SAM” test suite
● Add more tests

– VOMS testing
– SRM v2 tests

● Add to build system
● Documentation

So how do we release this
tested code?

● Web page
– as tar, rpm by architecture.

● Yum/Apt repository
– SL3,SL4 32/64 bit

● To LCG
– Certification testbed

● fresh install and upgrade tests.
● 1 week no functional tests fail

– Pre production testbed
● 4 weeks no admins reject.

Summary Plans

● Automate full work flow of release
– Build->Deploy->Test

● no interaction needed
● many platforms, many architectures

● Continue supporting “current” LCG
architecture.
– This is a moving target.

● Moving toward test driven development.
– Tests written before service.

● Stress testing (Much harder to automate)

Summary Achievements

● Dcache deployment to LCG
– CERN deployment lag reduced to 1-2 months

● Dcache LCG deployment now in OSG
– Also in VDT.

● Admins assert release quality increased
● Much faster release cycles

Summary

● Essential for all grid software.
– Build system.
– Functional test suite.
– Automated install.

● Test driven development is faster
– Harder to add in retrospect

● Finding bugs before the users helps
– reduce bug reports, increases deployment,

makes deployment people happy :)

