
An introduction to ‘Modern’ C++

April 21, 2022

John Bulava
Zeuthen Data Science Seminar (ZDSS)

What is C++?

I Compiled and ‘Close to the metal’: efficient use of memory
and CPU resources

I High-level design concepts: Classes, Templates,
Lambda-expressions

I Newer C++ standards (C++14, C++17, C++20) support
concurrent programming and scientific computing

Photo taken near Ostkreuz S-
bahn station.

A bad omen for C++?!?

Advantages of C++:

I Portability: same code on laptops on supercomputers

I Control: strongly checked typing, safer pointers, access control

I Additional Functionality compared to C, Fortran:
I Object-Oriented Programming (OOP): manipulate ‘classes’,

which are new user defined types.

I Generic Programming: use ‘templates’, which enable a single
code unit to be used for several types.

I (almost) no additional performance cost.

Disadvantages of C++:

I Compilation time and executable size will balloon!

I Inner workings of classes are hidden from the end user, easy to
do stupid things.

I Additional functionality enables a new level of obfuscated
code.

“With great power comes great responsibility”
-Uncle Ben, Spiderman

#include <iostream >

int main() {

std::cout << "Hello World!" << std::endl;

return 0;

}

I cout is an object of class ‘ostream’, defined in the standard
library

I cout is declared in the standard library header iostream.h,
within the std namespace

I ‘<<’ is an operator to send to an ostream object.

I endl is an end of line character and a buffer flush.

I Similar to cout, there is cerr, clog.

I ‘<<’ can be overloaded to take objects of many different
types.

#include <iostream >

using namespace std;

int main() {

MyClass mc;

cout << "Hello World! " << 12345 << " "

<< 5.6 << " " << mc << endl;

return 0;

}

#include <iostream >

class MyClass {

private:

int i;

public:

MyClass(int j) : i{j} {} // constructor

void printout () {

std::cout << "i = " << i << std::endl;

}

};

int main() {

// MyClass mc1; //will not compile

MyClass mc2 (4);

mc2.printout ();

//std::cout << mc2.i; //will not compile

return 0;

}

I Class objects are instantiated by calling the constructor. The
constructor which takes no arguments is the default
constructor.

I Since no default constructor is declared, objects of type
MyClass can’t be constructed with no arguments.

I Using the curly brackets to initialize i is only possible in
C++11 (initializer list) and above.

I Members are accessed using the ‘.’.

I Only public members may be accessed! Since i is declared as
private, it cannot be directly accessed outside the class.

I Unless otherwise specified, class members default to private
access.

I Note: C++ also has the struct keyword. Only difference
between structs and classes is that struct members default to
public access.

Preview of general class ideas in C++:

I The interface to classes is tightly controlled! This (hopefully)
reduces errors. Always consider the interface, use minimal
access.

I Classes can inherit from other classes, to gain some of thier
members. Multiple inheritance is also possible.

I We say that the derived class inherits from the base class.

I Polymorphism: Code can be written to interact with a
pointer to a base class object. The pointer could point to a
derived class object!

class Vector {

private:

double* elem;

int sz;

public:

// constructor

Vector(int s) :elem{new double[s]}, sz{s} {

for (int i=0; i<s; ++i)

elem[i]=0;

}

// destructor

~Vector () { delete [] elem; }

double& operator [](int i) {

return elem[i];

}

int size() const {return sz;}

};

I The operator[] and size members are declared but not
defined.

I Class members are typically declared in header (.h, .hpp)
files and defined in (.cc,.cpp) files.

I The above code belongs in vector.h. Read the header to see
the interface.

I The destructor defines what must be done to (safely) destroy
an object.

I A default destructor is automatically generated which
destructs each member variable (data member). This would
result in a memory leak for Vector!

I new is the C++ equivalent of malloc while delete is the
C++ equivalent of free.

I Note that deleting an array requires ‘[]’.

I ‘[]’ is overloaded to behave like a C-style array. v[5]=6 is
equivalent to v.operator[](5)=6. More about this later.

I Calling the size member does not change the state of the
object, i.e. the values of the data members. The const

modifier indicates this explicitly.

I There is NO access to the underlying pointer and sz cannot
be changed. These are private members.

I It is (as far as I can see) impossible to cause a memory leak
using Vector, as new and delete are called automatically.

Vector is an example of RAII (Resource Allocation Is
Initialization):

I Classes which manage resources (memory, files, input/ouput,
etc.) are called containers or handles.

I Resources are allocated during initialization by the constructor
and released when the destructor is called, i.e. when the
object passes out of scope.

I No ‘naked’ new or delete calls, files left open, etc.

Pointers in C++:

// pointer to a single double

double *d = new double;

delete d;

// pointer to an array of doubles

double *darr = new double [5];

delete [] darr;

//‘new’ calls constructor

MyClass *mcp = new MyClass ();

mcp ->member ();

//‘delete ’ calls destructor.

delete mcp;

// default constructor called for each.

MyClass *mca = new MyClass [10];

//Call the destructor for each one.

delete [] mca;

References in C++:

MyClass mc;

MyClass& mcr = mc;

...

mcr.member ();

//and const. refs.

const MyClass& mccr = mc;

...

mccr.const_member ();

C++ references are very safe.

double& h1; //will not compile

const double& h2; //will not compile

double d1 =5.6;

const double& r1 = d1; //fine

double& r2 = r1; //will not compile

const double& r2 = r1; //fine

I A reference must be initialized to an existing object.

I A reference can never be moved to another object.

I Thus, a ref. is confined to the scope of the object it
references.

I When new is used w/ a class, the constructor is called.

I Just like C, every new must be accompanied by a delete,
which calls the destructor.

I Dynamically allocated C-style arrays work the same way with
classes.

I References must be initialized when declared.

I Since references do not allocate new resources, they do not
have to be ‘deleted’, and just fall out of scope.

More about access control. Consider the following function
declarations:

//Pass by value , return a value

double func(double arg);

//When used with assignment , a temporary

//is formed and a copy occurs

double a,b;

a = func(b);

//Pass a reference , it can be changed

double changer(double& arg);

//Pass a ref., it cannot be changed

double no_changer(const double& arg);

Functions can also take and return pointers:

//I hope it doesn’t delete my pointer

double danger1(double *);

//I hope it doesn’t grab any resources

double* danger2(double *);

When in doubt (i.e. by default) pass by constant reference (except
for small objects). Don’t use pointers unless absolutely necessary.

Besides the constructor and destructor, there are other special
member functions:

I the copy constructor: Constructs a class object from another
object.

I the overloaded assignment operator (=): Assigns the object
to an existing object.

public:

//copy constructor

Vector(const Vector& vec_in);

// overloaded assignment operator

Vector& operator =(const Vector& vec_in);

If you don’t explicitly define the destructor, copy constructor, and
assignment operators, they will be defined for you.

public:

// default copy constructor

Vector(const Vector& vec_in): sz(vec_in.sz),

elem(vec_in.elem) {}

// default assignment operator

Vector& operator =(const Vector& vec_in) {

sz = vec_in.sz;

elem = vec_in.elem;

}

// default destructor

~Vector () {}

The default copy constructor and assignment operators perform
shallow copies.

Since Vector is a resource handle, we need to implement our own
copy constructor and assignment operator, which perform deep
copies.

//deep copy constructor

Vector(const Vector& vec_in): sz(vec_in.sz) {

if (vec_in.elem != 0) {

elem = new double[sz];

for (int i = 0;i<sz;i++)

elem[i]= vec_in[i];

} else

elem = 0;

}

//deep assignment operator

Vector& operator =(const Vector& vec_in) {

if (this == &vec_in)

return *this;

delete [] elem; // erase existing elements!

sz = vec_in.sz;

if (vec_in.elem != 0) {

elem = new double[sz];

for (int i = 0;i<sz;i++)

elem[i]= vec_in[i];

} else

elem = 0;

return *this;

}

I Recall that for resource handles, a non-trivial destructor is
also required.

I The Rule of Three: If a class requires a non-trivial
implementation of one of the following, it requires a
non-trivial implementation of all of the following:
I Destructor
I Copy Constructor
I Overloaded Assignment Operator

I Resource handles typically require all three.

I If shallow copying will suffice, let the compiler do it!

Copy construction and assignment can be disabled:

private:

Vector(const Vector& vec_in);

Vector& operator =(const Vector& vec_in);

Now the following won’t compile:

Vector v1(5); //OK

Vector v2(v1); // ERROR!

Vector v2(3); //OK

v2=v1; // ERROR!

What about the default constructor?

I The compiler will automatically generate a constructor which
default constructs all members.

I But that won’t grab any resources, or initialize them!

I The default constructor can be similarly disabled:

private:

Vector ();

So that the following won’t compile:

// ERROR if default constructor

//is disabled.

Vector v1;

I ‘Rule of Four’ with disabling of default constructor.

An important aspect of C++ object-oriented programming is
inheritance:

I A class that inherits from another class gains its members.

I The class inherited from: base class

I The inheriting class: derived class

I Members of the derived class have access to the public and
protected members of the base class.

class MyBase {

public:

void member ();

};

class MyDerived : public MyBase {

public:

void other_member ();

};

int main() {

MyDerived md;

md.other_member ();

md.member ();

return 0;

}

I Only public and protected members of MyBase are
inherited by MyDerived.

I This is an example of public inheritance: no additional
restrictions are placed on the inherited members.

I protected, private inheritance is also possible. Default is
private for classes and public for structs.

I Objects are constructed ‘bottom up’: base before derived
I Objects are detroyed ‘top down’: derived before base
I IMPORTANT: virtual base class members can be overidden

by derived class.
I pure virtual base class members MUST be overridden by

derived classes.
I Any class with pure virtual members is called abstract.

class MyBase {

public:

// Virtual member: can be overridden

virtual void member1 ();

//Pure virtual member: must be overridden

virtual void member2 ()=0;

// Ordinary member: cannot be overridden

void member3 ();

};

class MyDerived : public MyBase {

public:

//Allowed , but not required

void member1 ();

// Required

void member2 ();

// Forbidden

void member3 ();

};

Overriding base class members enables polymorphism:

I Derived classes can be dropped into base class pointers or
references.

I These pointers or references can be manipulated without
knowing which class they point to.

I The particular derived class can be chosen at compile-time
(compile-time polymorphism) or at run-time (run-time
polymorphism).

class MyBase {

public:

virtual void member ();

};

class MyDerived1 : public MyBase {

public:

void member ();

};

class MyDerived2 : public MyBase {

public:

void member ();

};

void func(MyBase& b) { b.member (); }

int main() {

//Compile -time polymorphism

MyDerived1 d1; MyBase& r1 = d1;

func(r1);

//Run -time polymorphism

MyBase *bp;

int one_or_two; cin << one_or_two;

if (one_or_two ==1)

bp = new MyDerived1 ();

else if (one_or_two ==2)

bp = new MyDerived2 ();

else bp = new MyBase ();

func(*bp); delete bp;

return 0;

}

I WARNING: Classes which are used as polymorphic base
classes should have virtual destructors!

I There is a computational and storage overhead due to virtual
functions.

I In each object of a class w/ virtual functions, a pointer to a
entry in the vtable (virtual function table) ensures that the
correct overridden function is called.

I Vtable functions cannot be inlined, are (20-25%) more
inefficient to call, and require an extra pointer to the vtable.

Last major functionality of C++: templates

I Recall Vector: a container/resource handle for double’s

I An analogous container for other types would be very similar.

I Using templates, the same source code can be reused for
many types.

template <typename DataType >

class Vector {

private:

DataType* elem;

int sz;

public:

// constructor

Vector(int s):elem{new DataType[s]}, sz{s} {}

// destructor

~Vector () { delete [] elem; }

DataType& operator [](int i) {return elem[i];}

const DataType& operator [](int i) const {

return elem[i];

}

int size() const;

}

Now, Vector can be used to store any type!

#include "vector.h"

int main() {

Vector <double > vecd (10);

Vector <int > veci (10);

Vector <bool > vecb (10);

....

vecd [5]=4.5;

cout << "size = " << vecd.size() << endl;

return 0;

}

Remarks about templates:

I Templates are a mechanism for generating code.

I Template code generation occurs at compile time.

I Only the code which is needed/used is generated.

I In order to generate code, compiler must have templated code
functions/members defined and present.

Template arguments can also be variables as well as types!

I Since all template-related code is generated at compile-time,
provides a mechanism to specify parameters and/or evaluation
expressions at compile-time.

I In principle, any operation can be implemented using
‘template manipulations’ and performed at compile-time.

I Compilation time, compilation errors, and executable size
grow significantly with templated code.

A compile-time implementation of the factorial function:

// General definition

template <int n>

struct Factorial {

static const int val = Factorial ::val <n-1>*n;

}

// Specialization for the base case

template <>

struct Factorial <0> {

static const int val = 1;

}

int main() {

cout << "4! = " << Factorial <4>::val << endl;

return 0;

}

Templates enable a very useful design pattern: policy-based
classes

I Policies are small classes that perform tasks needed for a
larger class in a particular way.

I different choices for the policy classes, i.e. different policies,
are chosen by passing the classes as template parameters to
the larger class.

I Syntax trick: make the larger class inherit from the policy
class(es).

I Another syntax trick: send the larger class to the policy
class(es) as template parameters. = Curiously Recurring
Template Pattern (CRTP)

Simple example:

struct Policy1 {

void func() { /*do policy 1*/}

};

struct Policy2 {

void func() { /*do policy 2*/}

};

template <typename Policy >

class MyClass : public Policy {

//func() is a member!

void member () { func (); }

}

int main() {

MyClass <Policy1 > mc;

mc.func (); // policy 1 gets called

return 0;

}

Templated version:

template <typename T>

struct Policy1 {

void func() { /*do policy 1*/}

};

template <typename T>

struct Policy2 {

void func() { /*do policy 2*/}

};

template <typename T,

template <typename U> class Policy >

class MyClass : public Policy <T> {

void member () { func (); }

}

int main() {

MyClass <float ,Policy2 > mc;

mc.func ();

return 0;

}

The Standard Template Library (STL):

I A collection of (mostly) templated container classes and
algorithms. Very useful!

I Sequential Containers: vector, deque, list, ...

I Associative Containers: set, map, multiset, multimap, ...

I All containers have iterators.

I Generic algorithms: find, copy, fill, replace, sort,

Example: STL vector

#include <vector >

using namespace std;

int main() {

vector <int , allocator > vec (10);

vec[5] = 3;

vec.resize (3); // destructive resize

vec [0]=4; vec [1]=2; vec [2]=10;

sort(vec.begin(), vec.end ());

// increase size by 1, last element is 3

vec.push_back (3);

// decrease size by 1, delete last element

vec.pop_back ();

return 0;

}

Remarks:

I Notice that sort took vec.begin() and vec.end().

I These are iterators, and are essentially pointers to the first
and last elements of the vector.

I I could have sorted only the first three elements of the vector
with

sort(vec.begin(), vec.begin ()+3);

I All containers provide the same interface using iterators.

Iterators behave just like pointers:

#include <list >

#include <set >

using namespace std;

int main() {

list <int > lcoll (10 ,1);

set <int > scoll (10 ,1);

for (list <int >:: iterator it=lcol.begin ();

it!=lcol.end (); ++it)

*it = 5;

for (set <int >:: const_iterator it=scol.begin ();

it!=scol.end (); ++it)

cout << *it << endl;

return 0;

}

Sequential Container guidelines:

I vector:
I (typically) quick to append (push back)
I generic insertions (insert) always require reallocation.
I memory is contiguous

I deque:
I (typically) quick to prepend (push front) and append.
I generic insertions always require reallocation.
I memory is contiguous

I list:
I prepend, append, and generic insertion are typically fast.
I memory is not contiguous.

I Just use vector, unless you have a good reason.

Associative Containers:

I data must be comparable, i.e. have a less or < implemented.

I implemented as binary trees, searching is very fast.

I order is well defined, iteration proceeds in the same order.

I set: collection of unique objects

I multi set: duplicates allowed.

I map: set of (key, value) pairs, keys are unique.

I multi map: set of (key, value) pairs, multiple entries with the
same key are allowed.

I C++11 has unordered versions which are implemented with
hash functions.

STL Algorithms (some of them):
I Sorting:

I sort(vec.begin(), vec.end()): quicksort implementation,
at best O(n log n), at worst O(n2).

I partial sort(vec.begin(), vec.end()): heapsort
implementation. At worst O(n log n).

I stable sort(vec.begin(), vec.end()): mergesort
implementation, O(n log n) or O(n log n log n) depending on
memory allocated.

I NOTE: implementation is not set by the standard, but
complexity is guaranteed. It’s best to do some testing, and
test results might not be portable.

I for each(vec.begin(), vec.end(), square), where
square is a function that squares a double. Will perform the
operation for each element in the range.

I fill(vec.begin(), vec.end(), value): set all elements
in the range to value.

I count(vec.begin, vec.end(), value): count all
elements in the range equal to value.

I min element(vec.begin(), vec.end()): return the
smallest element in the range. Similarly max element.

I find(vec.begin(), vec.end(), value): return the first
element equal to value in the range. Similarly, rfind returns
the last element equal to value.

Heterogeneous Containers:

I Each element can have a different type.

I std::pair is the simplest example, can hold 2 elements.

I std::tuple (C++11) can hold an arbitrary number of
elements.

I Why are they useful? For example, functions that take a
variable number of arguments.

pair example:

#include <utility >

#include <iostream >

int main() {

std::pair <int , char > p1;

p1 = std:: make_pair (10, ’A’);

p1:: first_type f = p1.first;

p1:: second_type s = p1.second;

std::cout << f << s << std::endl;

return 0;

}

tuple example (C++11):

#include <tuple >

#include <iostream >

using namespace std;

int main() {

tuple <int , char > t1(5, ’a’);

typedef typename T tuple <int , double , char >;

T t2 = make_tuple (1, 3.1, ’4’);

auto t3 = make_tuple (6, 5, "yeah", 1.23);

cout << "size = " <<

tuple_size <T>:: value << endl;

tuple_elements <3, T>:type e = get <3>(t2);

cout << "3rd element = " << e;

return 0;

}

More about pointers in C++: Smart Pointers

I Recall that Vector stored a pointer and handled its new and
delete. (RAII)

I Also recall that the copy construtor and assignment operator
performed ‘deep’ copies, in accordance with the ‘Rule of
Three’.

I It would be nice to have a ‘smart’ pointer class that also
correctly deleted the pointer. Several questions arise:

I How do we treat the copy constructor and assignment
operator? Don’t want a pointer to call new all the time.

I How do we make it safe?

What’s dangerous about this code? (Stroustrup)

void f(int i, int j) {

X* p = new X;

//...

if (j<77) return;

p->do_something ();

//...

delete p;

}

I It would be nice to have a pointer that automatically cleaned
up, using its destructor.

I Given such a ‘smart’ pointer, what about pointers to other
pointers?

void f(int i) {

SmartPointer <X> p1(new X(i));

if (i<99) {

SmartPointer <X> p2(new X(i+1));

SmartPointer <X> p3(p1);

p2 = p1; //what happens to newed mem.?

} // Should ~p2 and ~p3 be called?

p1->do_something (); //is p1 still ok?

}

I The problem lies in copy construction and assignment.

I In such cases, we need to designate an ‘owner’; only one of
the pointers is responsible for cleanup.

I There are few options to make this safe(r):

I Disable copy construction and assignment. A great choice if
possible!

I Transfer ownership on copy construction and assignment. This
is in the spirit of C++11 move construction and move
assignment.

I If multiple simultaneous pointers to the same resource are
required, only call delete when the last one goes out of scope.

The STL provides functionality to handle these options (C++11):

I unique ptr:
I Copy construction and assignment are disabled.
I However, move construction and move assignment is enabled.

I shared ptr:
I Allows copy construction and assignment.
I Move construction and assignment are also enabled.
I Tracks the number of pointers to a particular memory location

and only delete’s when the last one is destroyed.

I weak ptr: can be constructed/assigned with a
shared pointer, but does not count towards number of
pointers.

I auto ptr: C++03 version of unique ptr. Now deprecated.

Concurrency in C++11:

I No support whatsoever in C++03.

I C++11 has a clearly defined memory model (what the
compiler may/not do when accessing memory) that supports
threading.

I C++11 does NOT provide any support for multiple processes.
Basic MPI functionality: BoostMPI.

I Additional reference for C++11 concurrency: ‘C++
Concurrency in Action’, A. Williams, (Manning, 2012)

Say hello on a new thread (Williams):

#include <iostream >

#include <thread >

using namespace std;

void say_hello () {

cout <<"Hello from thread 1"<<endl;

}

int main() {

thread t1(say_hello);

t1.join ();

return 0;

}

Comments:

I The spawning of additional threads is managed by the
Standard Library thread class.

I Additional threads are constructed with a function (or
function object) which begins the thread of execution.

I main is executed on the intial thread, which could finish and
terminate the program before other threads are finished.

I The join member instructs other threads to wait until the
completion of a particular thread.

I The thread exits when its intialized function completes.

I If initalized with a function object, it is copied (via the copy
constructor) into local storage.

I You don’t want the function object to be large!

I Watch out if the function object holds references.

I thread::detach can be called instead of thread::join.

I This instructs the program to keep going.

I Computation could continue after detach is called and
possibly after the thread object is destroyed (i.e. falls out of
scope).

I If niether join nor detach is called before the thread object is
destroyed, the program terminates.

A cautionary tale about detach: (Williams)

struct MyStruct {

int& i;

MyStruct(int& j) : i{j} {}

void operator ()() {

for (int j = 0 ; j < 1e8 ; ++j)

do_something(i);

}

};

void problem () {

int local_var = 0;

MyStruct ms(local_var);

thread t1(my_func);

t1.detach ();

}

Handy design Pattern: Use RAII to ensure that all threads are
join’ed

class joined_thread {

std:: thread t;

public:

joined_thread(std:: thread tin):

t(std::move(tin)) {}

~joined_thread () {

if (t.joinable ())

t.join ();

}

joined_thread(

const joined_thread &)= delete;

joined_thread& opreator =(

const joined_thread &)= delete;

};

Comments:

I Note that a std::thread object is stored.

I thread copy construction and assignment are disabled.

I However, move construction and move assignment are enabled.

I Move construction and move assignement allow the transfer of
ownership, and are performed using std::move().

I std::move() casts its argument to an rvalue reference (&&).

I A thread can only be join’ed or detach’ed once.

I t.joinable() checks if it is still possible to join this thread.

I As with other RAII classes, putting join in the destructor
ensures it is called as the thread goes out of scope.

Test: will the program make it to the return?

#include <thread >

using namespace std;

void f() {

\\...

}

void g() {

\\...

}

int main() {

thread t1(f);

thread t2=move(t1);

t1=thread(g);

thread t3=move(t2);

t1=move(t3);

t1.join ();

return 0;

}

Test answer: NO!

#include <thread >

using namespace std;

void f() {

\\...

}

void g() {

\\...

}

int main() {

thread t1(f);

thread t2=move(t1);

t1=thread(g);

thread t3=move(t2);

t1=move(t3); //t1 previously owned a thread

t1.join (); //which is destroyed before join

return 0;

}

Passing arguments to the thread function:

#include <thread >

using namespace std;

void f(int i, double d) {

\\...

}

int main() {

thread t(f, 3, 6.3);

t.join ();

return 0;

}

Warning: conversions happen only when the thread function is
called.

#include <thread >

#include <string >

using namespace std;

void f(int i, const string& s) {

\\...

}

int main() {

thread t(f, 3, "hello");

t.join ();

return 0;

}

Note: f will convert const char* to string, but the thread t

stores "hello" as a const char*.

What’s the (potential) problem with this?:

#include <thread >

#include <string >

using namespace std;

void f(int i, const string& s) {

\\...

}

void g() {

char* buffer = "hello";

thread t(f, 3, buffer);

t.detach ();

}

I Only the pointer is copied and stored in the local memory of
the thread.

I That pointer is converted to a string when the thread
function (f) is called.

I What if the pointer goes out of scope before the conversion
happens and f is called? undefined behavior!

I Fix: convert when the thread is intialized. This ensures a new
string is created and stored.

void g() {

char* buffer = "hello";

thread t(f, 3, string(buffer));

t.detach ();

}

Another warning: arguments are copied locally to thread, even if
passed by ref. to thread function.

#include <thread >

using namespace std;

void f(const BigData& bd) {

//...

}

int main() {

BigData d;

//data is copied to thread storage

thread t(f,d);

t.join ();

//d is unchanged by thread.

return 0;

}

If you want to copy only a reference to the thread, use std::ref:

int main() {

BigData d;

//a reference to data is copied.

thread t(f,ref(d));

t.join ();

//d is modified by thread.

return 0;

}

Sharing data amoung threads:

I if shared data is read-only, no problem.

I Race condition: result depends on execution order of thread.

I could be benign: threaded accumulate.

I or problematic: adding/removing items to/from a linked list.

I a data race is a race condition due to many threads modifying
the same data.

I Simplest mechanism for sharing data between threads in
C++11: mutex

Simple mutex example:

#include <list >

#include <algorithm >

#include <mutex >

using namespace std;

list <int > lst;

mutex mtx;

void add_to_list(int val) {

mtx.lock ();

lst.push_back(val);

mtx.unlock ();

}

bool list_contains(int val) {

mtx.lock ();

bool ret = (find(lst.begin(), lst.end(), val)

!= lst.end ());

mtx.unlock ();

return ret;

}

I If each function is called on a different thread, locks prevent
code from being executed simultaneously.

I each lock() call must have a corresponding unlock()!

I Situation where one or more threads wait forever: deadlock.

I A simple way to manage locks using RAII: lock guard

I constructed from a mutex

I constructor calls mutex::lock.

I descructor calls mutex::unlock.

I usual RAII security. Deadlock is prevented if exception is
thrown, early return, etc.

Simple mutex example with lock guard:

#include <list >

#include <algorithm >

#include <mutex >

using namespace std;

list <int > lst;

mutex mtx;

void add_to_list(int val) {

lock_guard <mutex > grd(mtx);

lst.push_back(val);

}

bool list_contains(int val) {

lock_guard <mutex > grd(mtx);

return (find(lst.begin(), lst.end(), val)

!= lst.end ());

}

WARNING: unlocked access to protected data is still possible!

struct Data {

int a;

};

class Wrapper {

private:

Data dat;

mutex mut;

public:

template <typname T>

void safe_access(T f) {

lock_guard <mutex > lck(mut);

f(dat);

}

};

Data* undat;

void problem(Data& d_in) {

undat =&d_in;

}

Wrapper wrp;

void thread_func () {

//data is locked and released

wrp.saf_access(problem);

// Access possible without locking!

undat ->a = 5;

}

Comments:

I Encapsulating shared data in a wrapper (with locks!) is a
good idea.

I Unlocked access is still possible, e.g. by passing data
externally.

I In order to be completely safe, don’t pass pointers/references
to data outside scope of the lock:

I don’t pass data as an argument to an external function.

I don’t assign data to external pointer/reference.

I don’t return pointer/reference to data from a member
function.

Deadlock!

I Consider two resources (A and B), each with its own mutex.

I Consider two threads (1 and 2), which need to use both
resources.

I Both locks must be aquired by both threads. What happens if
they aquire locks in a different order?

I If locks are ALWAYS aquired in the same order, no problem.

I Not always so simple. What about e.g. locking two instances
of the same class?

I Example: Swap members of two class instances

class Wrapper {

Data dat;

mutex mut;

friend void swap_w(Wrapper&,Wrapper &);

};

void swap_w(Wrapper& w1 , Wrapper& w2) {

if (&w1==&w2) { return; }

lock_guard <mutex > g1(w1.mut);

lock_guard <mutex > g2(w2.mut);

swap(w1.dat , w2.dat);

}

I ’Order’ is fixed, always lock left argument first.

I What if swap w is called simultaneaously on two threads, with
the same arguments, in different orders? DEADLOCK!

I Fortunately, std::lock(m1,m2,...) can lock an arbitrary
number mutex’s without any deadlock!

I Deadlock avoidance algorithms are non trivial. Example:
Banker’s Algorithm (Dijkstra ‘65)

I C++11 standard does not specify how std::lock works, so
it’s implementation dependent.

Revised code which uses std::lock to prevent deadlocks:

class Wrapper {

Data dat;

mutex mut;

friend void swap_w(Wrapper&,Wrapper &);

};

void swap_w(Wrapper& w1 , Wrapper& w2) {

if (&w1==&w2) { return; }

lock(w1.mut , w2.mut);

lock_guard <mutex > g1(w1.mut , adopt_lock);

lock_guard <mutex > g2(w2.mut , adopt_lock);

swap(w1.dat , w2.dat);

}

We still use lock guard, but pass the enum std::adopt lock to
transfer ownership.

I std::lock only handles locks aquired together.

I Deadlocks are still possible when multiple locks are aquired
seperately.

I Deadlock prevention isn’t easy! General rule (Williams): don’t
wait for another thread if it might be waiting for you.

Deadlocks can occur without locks or shared data!

#include <thread >

using namespace std;

void f() {//...}

void g(thread& t) {

//...

t.join ();

}

int main() {

thread t1;

thread t2(g,t1);

t1 = thread(g,t2);

return 0;

}

General guidelines to avoid deadlocks:

I Don’t aquire multiple locks (if possible). This prevents
deadlocks due to mutex objects.

I Don’t call external functions when holding a lock.

I Aquire multiple locks simultaneously if possible. If not,
acquire them in a fixed order on each thread.

I If multiple locks are required, and cannot be aquired
simultaneously, enforcing a fixed order aquisition defines a
lock heirarchy.

HierarchicalMutex high_mut (100), med_mut (50),

low_mut (25);

void med() {

lock_guard <HierarchicalMutex > g(med_mut);

//...do some medium level stuff

}

void threadfunc1 () {

lock_guard <HierarchicalMutex > g(high_mut);

//...do some high level stuff

med (); //Ok to lock a lower level.

}

void threadfunc2 () {

lock_guard <HierarchicalMutex > g(low_mut);

//...do some low level stuff

med (); //NOT OK.

}

unique lock:

I lock guard is nice, but only two options are possible:

I lock the mutex on construction.
I assume ownership of a locked mutex with adopt lock.

I What if we want the RAII benefits, but don’t want to lock
when the guard is constructed?

I std::unique lock can be constructed with a mutex and
std::defer lock which allows the mutex to be locked at a
later date, but still retains the nice RAII safety.

Simple std::unique lock example:

class Wrapper {

Data dat;

mutex mut;

friend void swap_w(Wrapper&,Wrapper &);

};

void swap_w(Wrapper& w1 , Wrapper& w2) {

if (&w1==&w2) { return; }

unique_lock <mutex > g1(w1.mut , defer_lock);

unique_lock <mutex > g2(w2.mut , defer_lock);

lock(g1 , g2);

swap(w1.dat , w2.dat);

}

I unique lock objects may be passed to std::lock.

I lock guard cannot be move constructed or assigned.

I In analagy with unique ptr, unique lock allows ownership
to be transferred using move contruction/assignment.

I mutex locks can now be transferred out of the immediate
scope!

Synchronizing operations:

I So far, we have protected shared data by coordinating access
with mutex and lock.

I Synchronizing operations is also important. We might want
to:

I wait for a specific event to happen: futures

I wait for a condition to be true: condition variables

Condition variable example:

#include <condition_variable >

#include <mutex >

mutex mut;

vector <Data > data_vec;

condition_variable data_cond;

void data_get_thread () {

while(more_data_to_get ()) {

Data temp = get_data ();

lock_guard <mutex > g(mut);

data_vec.push_back(data);

data_cond.notify_one ();

}

}

bool not_empty () { return !data_vec.empty ();}

void data_proc_thread () {

while(true) {

unique_lock <mutex > lk(mut);

data_cond.wait(lk , not_empty);

Data temp = data_vec.back ();

data_vec.pop_back ();

lk.unlock ();

process(temp);

if (done ())

break;

}

}

Comments:

I notify one member tells the waiting thread to ‘wake-up’ and
check its condition.

I wait member takes a lockable object and a boolean function.

I When the waiting thread is notified, it aquires the lock and
tests the condition.

I If the condition is false, the waiting thread releases the lock
and continues to wait.

I If the condition is true, the waiting thread stops waiting and
proceeds (with the lock aquired).

(Williams) Find the answer to Life, the Universe, and Everything
using future

#include <future >

#include <iostream >

using namespace std;

int answer_to_ltuae ();

int main() {

future <int > the_answer =

async(answer_to_ltuae);

//...

cout << "The answer is " <<

the_answer.get()<<endl;

return 0;

}

Comments:

I async launches a new thread to do the computation.

I constructor is just like thread constructor.

I thread did not have an easy way to get a result back from
the computation.

I The (templated) future forces the program to wait at either
the get, or the wait call.

Some syntatic sugar from C++20: the spaceship operator <=>

#include <iostream >

using namespace std;

class MyClass {

int b;

bool operator <=>(const MyClass& rhs) const = default;

};

int main() {

MyClass m1{5}, m2{6};

//All the following compile:

cout << "(m1 < m2) = "<< (m1 <m2) << endl;

cout << "(m1 > m2) = "<< (m1 >m2) << endl;

cout << "(m1 == m2) = "<< (m1==m2) << endl;

cout << "(m1 != m2) = "<< (m1!=m2) << endl;

cout << "(m1 <= m2) = "<< (m1 <=m2) << endl;

return 0;

}

In conclustion:

I C++ balances ‘close to the metal’ and abstraction

I ‘Close to the metal aspects’: pointers+references, strong
typing, control over computation/copying

I Abstract concepts: overloaded operators, classes, templates

I Particular advantages for scientific computing: portability,
large standard library, efficient compilers, concurrency

I Use C++ if:
I Speed, efficiency, portability is important
I Project is large, or there’s a potential for growth
I Multiple collaborators to ‘divide and conquer’

