
Primordial black holes in an early
matter era and stochastic inflation1

1Based on [1912.01638], [2001.08220], [2006.14597], and two more works in preparation
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Introduction
• Primordial Black Holes are dark matter candidates. They are interesting be-

cause they do not require physics beyond inflation. Their astrophysical signatures
(gravitational waves, lensing, etc.) could be probed within the next decade2.

• PBHs can account for the totality of the (un)observed dark matter if3

10−16 M⊙ ≲MPBH ≲ 10−11M⊙.

• We want to answer the following questions:

1. How many different ways are there to obtain PBHs from inflation?

2. Is PBH formation more likely during an early matter era?

3. Does quantum backreaction in inflation affect the formation probability?

4. How can we probe each one of these scenarios?

2M. Sasaki et al. [1801.05235]
3B. Carr, et al. [0912.5297], A. Arbey et al. [1906.04750], H. Niikura et al. [1701.02151], A. Katz et al. [1807.11495]
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Primordial black holes
PBHs are formed in the early universe by mechanisms different to stellar collapse.
There are many possibilities, from the collision of vacuum bubbles to inflation.

• For PBHs to form, we need large
density fluctuations δ = δρ/ρ.

• These are produced during infla-
tion. They leave the horizon and
induce collapse upon re-entry.

• We assume transitions are instan-
taneous.
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Collapse in the radiation era
The mass of the PBHs that form is some fraction of the total energy in a Hubble patch,
and thus depends on the scale of the fluctuation4,

MRD = γ
4
3
πρH−3 ∝ γk−2, fRD ∝ βRDM

−1/2
RD .

where γ ≲ 1 because of causality, fRD is the fraction of DM in the form of PBHs, and

βRD(k) ∝ 1
√
Pδ

∫ ∞

δc

exp
(
− δ2

2Pδ

)
dδ

is the fraction of energy that collapses (beware, only for Gaussian fluctuations).

• The power spectrum Pδ(k) tells us how fluctuations in energy density δ are dis-
tributed across different scales, and is what CMB experiments measure.

• Fluctuations at CMB scales do not produce enough PBHs to explain all DM. We
need to enhance the power spectrum at small scales.

4B. Carr [10.1086/153853]
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Black holes from inflation
Roughly speaking (only in slow roll),

Pδ(k) ≃ H4

φ̇2
,
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Other mechanisms (work in progress!)
Consider a generic action for curvature perturbations R≃ δ

S =
∫

d4x M2a
3ϵ
c2
s

[
Ṙ2 − c

2
s

a2(∇R)2
]

→ Pδ ≃
H4M2

p

csφ̇2M2
.
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The simplest model
Consider a scalar field coupled to gravity in the Jordan frame5

S =
∫

d4x
√−g

[
−1

2
(M2

p + ξφ2)R+
1
2
gµν∂

µφ∂νφ−V (φ)
]
.

We can get rid of the coupling to R by redefining the fields,

Ω2 ≡ 1 + ξφ2/M2
p ,

gµν→Ω2[φ]gµν,

Ω2 dh
dφ

=

Ω2 +
3
2
M2

p

(
dΩ2

dφ

)21/2

,

where h is such that the kinetic term is canonically normalized. The resulting potential
is (where the denominator helps fit the CMB data)

U (h) ≡ V

Ω4 =
a2φ

2 + a3φ
3 + a4φ

4

(1 + ξφ2/M2
p)2

∣∣∣∣
φ=φ(h)

.

5G. Ballesteros and M. Taoso [1709.05565], G. Ballesteros et al. [2001.08220]
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By adjusting the tilt of PR at CMB scales we run into problems with evaporation
bounds, npoly

s ≃ 0.949 but nΛCDM
s = 0.9649 ± 0.0042. To fix this we can either extend

ΛCDM, or add higher-dimensional operators to the potential.
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Quantum backreaction
In stochastic inflation, quantum fluctuations backreact on the classical trajectory of the
inflaton, modifying its background evolution6,

dφ̄

dN
= −

∂φV

3H2 +
H
2π

ξφ → PR≪ 1 (slow roll)

The field is split into a coarse-grained part and a perturbation,

φ(t,x) = φ̄(t) +
∫

d3k
(2π)3/2W [k − kσ (t)]

[
akφk(t)eik·x + hc.

]
︸                                               ︷︷                                               ︸

φ̂Q(t,x)

,

where kσ = σaH is a cutoff that separates classical, superhorizon modes from quantum,
subhorizon modes. The perturbation is a stochastic variable.

Defining ”classicality” is tricky, but it turns out to be equivalent to the freeze-out time
of perturbations once they leave the horizon.

6G. Ballesteros, and M. Taoso [1709.05565], A. Starobinsky [10.1007/3-540-16452-9-6], M. Biagetti et al. [1804.07124],
J. M. Ezquiaga and J. Garcı́a-Bellido [1805.06731]
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The quantity of interest now is the probability distribution for the coarse-grained vari-
ables Φ = (φ̄, π̄), P (Φ ,N ). This can be found by solving the Fokker-Planck equation,

d
dN

P (Φ ,N ) = LFP(∂Φ)P (Φ ,N ).

If we are only interested in the power spectrum, we can derive equations for the statis-
tical moments by using φ̄ = φcl + δφst and

⟨δφn
stδπ

m
st⟩(N ) =

∫
dΦP (Φ ,N )(φ̄−φcl)

n(π̄ −πcl)
m.

The power spectrum is given by

PR =
1

2ϵcl

[
Dφφ + 2⟨δφstδπst⟩ − 2(ϵcl − ηcl)⟨δφ2

st⟩
]
,

where Dφφ is a noise correlator that depends on the window function we chose earlier.
The equations of motion for the statistical moments can be solved analytically by con-
sidering a series of phases with constant η to show 2⟨δφstδπst⟩ − 2(ϵcl − ηcl)⟨δφ2

st⟩ = 0,
as long as the cutoff is chosen correctly.
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We show that the power spectrum coincides, at the linear level, with the perturbative
result in the σ → 0 limit, even in the presence of an ultra slow roll phase.
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We focused on the power spectrum, but in stochastic inflation it is possible to compute
the full PDF. Recent analyses in perfect USR suggest an exponential tail 7.

7D. Figueroa et al. [2012.06551], J. M. Ezquiaga et al. [1912.05399], C. Pattison et al. [2101.05741], M. Biagetti et
al. [2105.07810]
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Collapse in an early matter era
If collapse occurs during an early matter-dominated era, the abundance is

fRD ∝ βRDM
−1/2
RD fMD ∝ βMDTm

The β function represents the fraction of energy density that collapses. This function
has very different forms in MD and RD 8,

βRD(k) ∝ 1
√
Pδ

∫ ∞

δc

exp
(
− δ2

2Pδ

)
dδ,

βMD(k) ∝ I6Pδ exp

−α (
I4

Pδ

)1/3 .
The latter takes into account the non-sphericity and angular momentum (related to I )
of the collapsing cloud.

Intuitively, collapse should be easier during an eMD era because of the lack of radiation
pressure (roughly speaking).
8T. Harada et al. [1609.01588], T. Harada et al. [1707.03595]

Julián Rey – Instituto de Fı́sica Teórica (UAM) (12/17)



Advantages and disadvantages
Collapse during matter-domination has two advantages,

1. The power spectrum required to get a significant PBH abundance is much smaller
in MD than in RD, PRD ∼ 10−2 vs.PMD ∼ 10−4 (at Tm ∼ 105GeV).

2. The abundance is much less sensitive to small changes in PR, since β is different.
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Gravitational wave signal (work in progress!)
The gravitational wave signal arises at second order in Einstein’s equations,

hTT′′
ij + 2HhTT′

ij −∇
2hTT

ij = −4T lm
ij slm,

where the source is quadratic in first-order scalars.
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There is a bound on ΩGW arising from both the CMB and the abundance of light ele-
ments produced during Big-Bang Nucleosynthesis9 (Tm = 105.7GeV vs Tm = 105GeV),

ΩGWh2 < 1.8× 10−6.
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9L. Pagano et al. [1508.02393]
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Conclusions and remarks

• The simplest potential that can produce PBHs is viable, provided ΛCDM is ex-
tended, or higher-dimensional operators are considered.

• If dark matter is in the form of PBHs, the corresponding GW signal should be
observable by LISA and DECIGO. The MD case requires care and leads to bounds
on the abundance.

• We have shown that, at leading order, stochastic inflation does not affect the
power spectrum, even in the presence of a USR phase. The full probability distri-
bution is another story.

• PBH formation in an early matter-dominated era has significant advantages, namely,
that a smaller enhancement of the power spectrum is required, and the potential
parameters are less tuned. It is more difficult to evade evaporation bounds.

• There are many sources of uncertainty in the MD formulas. A more thorough
analytical description is necessary, together with numerical simulations.
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Thank you!
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