New digital SiPMs from Philips: Applications and first tests

C. Degenhardt, G. Prescher, **T. Frach**, A. Thon, R. De Gruyter, A. Schmitz, R. Balizany www.Philips.com/DigitalPhotoncounting M. Düren, K. Föhl, B. Kröck, P. Koch, O. Merle,H. Stenzel Avetik Hayrapetyan

II Phys. Inst. JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Oct4-5 2010, Kirchhof Institute for Physics, Heidelberg University, <u>Detector</u> <u>Workshop of the Helmholtz Alliance "Physics at the Terascale"</u>

Outline

- Photon detectors and requirements
- Our Projects
- new Philosophy from Philips , going Digital
- First Tests with real beam
- Outlook / our Plans

The Photon Detectors and requirements on them

The "first" requirement and "first" PMT

V.K. Zworykin, US Patent 2.021.907, 1935

"My invention relates to improvements in methods of and apparatus for producing images of objects or phenomena which are invisible to the human eye."

The Photon Detectors and requirements

Detect the Photons, Photon Counting....

Detect the Photons and measure their position, Photon Imaging, RICH detectors Detect the signal, measure their Positions and Time....3D TOP PID detector

The Photon Detectors and requirements

Detect the Photons, Photon Counting....

Detect the Photons and measure their position, Photon Imaging, RICH detectors.HERMES

Photon detector

- Hexagonal grid of 1934 PMTs per detector half
- → PMT Type: Philips XP1911/UV
- → ¾ inch PMT diameter
- Active area increased to 91% by reflective funnel cones

Our Projects 1

Use of fast Photon Detectors for ATLAS Forward Physics (AFP)

QUARTIC (fused silica) bars / fibers + GAS-TOF with MCP-PMT or APD

Scattered proton time resolution goals: single bar $\delta t \approx 40-45$ ps GAS-TOF $\delta t \approx 30$ ps

combinative \rightarrow 10-20 ps

For more info about AFP see the talk of A. Astvatsatourov in this Workshop

a) \rightarrow b) : pile-up background rejection with ToF system

Our Projects 2 DIRC cherenkov of PANDA Experiment at FAIR http://www-panda.gsi.de/

The photon detectors and requirements

Detect the Photons, Photon Counting....

Detect the Photons and measure their position, Photon Imaging, RICH detectors Detect the Photons, measure their Positions and Time and Color and ask Who are their Parents....many dimensional PID detector

New Philosophy from Philips - going Digital 25.com/digitalphotomcounting

Digital SiPM – The Concept

dSiPM and its features

The Time Resolution with Scintillation

C. Degenhardt et. Al. 2009 IEEE Nuclear Science Symposium

Our suggestion was to test it with Cherenkov Photons

Advantages -it is much faster than Scintillation -it has well defined angular distribution defined by medium and particle type -it has continuous spectra from UV to IR well covering QE region of SiPMs

The new Prototype

The radiator is made from Plexiglas with refraction index ~1.5, Making Cherenkov light at 48.2 degree, this defines the geometry With good cooperation between Philips and JLU Giessen it was possible to build it and test first with pulsed laser

Philips sensor build in

array control logic		
2047 <u>SPADs</u> + electronics	2047 <u>SPADs</u> + electronics	0
2047 <u>SPADs</u> + electronics	2047 <u>SPADs</u> + electronics	F

One arm of the detector composed from 4 arrays each of them with 2047 SiPMs 1 SiPMT has a size 30X52um and array had ~54% fill factor It includes possibility to inhibit individual SiPMs Integrated TDC with 8ps sigma Resolution Possibility to have variable trigger(1-4 photons) and energy thresholds(1-64) DAQ controller is in FPGA allowing whole flexibility of Tests

One of the Results from Laser tests more relevant to AFP(many photons)

CERN Testbeam

*Protons of 120 GeV Focused on radiator with small angular divergence

*Special Thanks goes to AFP People making beam time available in short notice

*Beam diameter ~6mm RMS

*Duty cicle was only ~17% , allowing influence of the Background

*Possibility of external trigger

*Measurement credits goes to Thomas Frach , Christoph Rembser doing ALL measurements

Results of CERN Test Number of detected Photons and single photon resolution

- 98% diodes active
- 3.7V excess voltage
- *T*=2°*C*, *DCR* = 477/553*kHz*
- First photon trigger
- No energy threshold
- CRT σ = 85.9ps
- Sensor resolution = 60.7ps

Resolution against number of detected photons

Results of CERN Test Time Resolution against excess voltage

Conclusions/Outlook

- > Philips dSiPM was tested to detect Cherenkov Photons first time
- > Promising results in terms of time resolution
- > Cooling is a MUST for detecting single photons
- >new version will improve the fill

factor and trigger network

> Next test beam (DESY December 2010) with more time for systematic studies BACKUP GOESFROMHERE

Prototypes we built so far

Our TestBeams

scale 1:10 DESY 2010 May

 \square

fibre de

rizontal vertical

DESY(2008,2010,2010) e +- E=1-6 GeV

GSI (2009) Protons P=2.95 GeV/c

Jülich (2010,2010) Protons T=2.9 GeV

CERN(2010) Protons120 GeV

