

Upgrading LHC Calorimeters

A. Straessner

3. Detector Workshop Helmholtz Alliance "Physics at the Terascale" Heidelberg, October 4-5, 2010

- Introduction
- CMS and ATLAS calorimeter upgrade plans
- ATLAS forward calorimeter (FCal)
- Calorimeter read-out electronics upgrade
 - CMS HCAL and CASTOR detectors
 - ATLAS LAr and Tile Calorimeters
- Summary

R. Bailey ICHEP2010

LHC Upgrade Path-Part 2

- in each upgrade phase the detectors must be prepared for the optimistic luminosity scenario
- total luminosities of ~400 pb⁻¹ and 3000 pb⁻¹ \rightarrow total dose effects
- peak luminosities L= 2 x 10^{34} cm⁻²s⁻¹ and 5 x 10^{34} cm⁻²s⁻¹ \rightarrow rate/occupancy effects
- all upgrade options, in particular for phase 2, should be motivated by physics performance

ATLAS – Calorimeter Upgrade Plans

- consolidation phase (2011-2012):
 - replacement of non-reliable electronics on the detector (low-voltage power supplies, optical transceivers, slow-control boards)
 - improve accessibility of electronics (hadronic endcap)
- 1st upgrade phase (2016) / 2nd upgrade phase (2020):
- free-running readout electronics for LAr and Tile calorimeters
- new digital L1 Calorimeter trigger electronics
- possible replacement of HCAL cold electronics
- possibly new diamond-Cu sampling forward calorimeter (MiniFCal) or
- new forward LAr-Cu calorimeter (sFCal1)

CMS – Calorimeter Upgrade Plans

- phase 0 (2012):
- new SiPM photodetectors for Hadronic Calorimeters in the outer barrel region (HO)
- new PMT's for SPACAL / CASTOR Calorimeter
- phase 1 (2016):
- replacement of HPD photodetectors for Hadronic Calorimeters (HB, HE)
- new PMT's and fibers for forward Hadronic Calorimeter (HF)
- phase 2 (2020):
- possible modification of APD readout of ECAL barrel
- possibly replacement of ECAL PbWO₄ endcaps
- trigger/DAQ system upgrade

ATLAS Current FCal

- current FCal1 will work properly up to luminosities of 1x10³⁴ cm⁻²s⁻¹
- the FCal1 will however not work efficiently above ~3x10³⁴ cm⁻²s⁻¹
- reasons:
 - positive Ar ion buildup leads to field distortion and to signal distortion
 - high HV currents lead to voltage drop
 - heating of LAr and boiling (only at very high luminosities \rightarrow additional LN₂ cooling)

all effects related to particle rate ~peak luminosity

ATLAS sFCal

- solution 1: smaller LAr gaps reduce ion build-up effects and HV drop
- build new sFCal (Cu/LAr) calorimeter with 100 μm gaps instead of 250 μm to replace FCal1
 - test beam measurement of pulse shapes in Protvino/Russia with a high-intensity proton beam

- in FCal test module with 250 µm gaps:
 - HV current proportional to beam intensity up to $6x10^9$ p/spill \rightarrow no strong ion build-up effect
 - \rightarrow 6x10³⁴ cm⁻²s⁻¹ at inner FCal1 radius
- in electromagnetic endcap (EMEC) test module:
 - non-linear behaviour observed above critical intensity of ~10⁸ p/spill \rightarrow ion-build up effects
- more understanding of ion-build-up effects needed

ATLAS MiniFCal

- new sFCal would require an opening of the endcap cryostat
 - very difficult and risky operation
 - components will be activated \rightarrow requires additional safety measures during module extraction
 - only performed if new front-end electronics for the hadronic endcap calorimeter is needed
- solution 2: new MiniFCal in front of current FCal \rightarrow in front of endcap cryostat

ATLAS MiniFCal

- technology: Cu absorbers and diamond detector disks
- neutron flux $\sim 5 \times 10^{17} \text{ n/cm}^2$ (10 yr HL-LHC)
- 12 Cu disks and 11 detector planes
- 18.8 radiation lengths, sampling fraction 0.005
- ~5000 diamond pixels 1cm x 1cm
 → geometry, shape and ganging to be optimized
- absorption in Cu disks reduces energy deposit in FCal1 by 45%
- voltage drop in FCal less than 50 V for radius>11 cm
 oply 3% of ECal affected by HV/ dr
 - \rightarrow only 3% of FCal affected by HV-drop

- pCVD diamond sensors are being tested in test beams, e.g. at TRIUMF (Canada): delivers >10¹⁷ protons/cm² in 10 days
- signal characteristics and radiation tolerance
- thicknesses between 200 µm and 800 µm are tested
- 3 different quality grades are available

Motivation for Upgrade of Read-out Electronics

- improve current read-out electronics where it does not perform as expected
- exploit high detector granularity as input to trigger electronics
- main reasons: reduce pile-up background by taking finer detector details into account, e.g.
 - better isolation of leptons from hadronic jets
 - sharper trigger threshold for hadronic jets
- go for free-running read-out scheme
 → improve on read-out speed and increase bandwidth
- improve radiation tolerance
- ageing of electronic components
 - current electronics will run for >10 years by 2020
 - not much experience in HEP community for such long operational time

Plots from Abdel Abdesselam, June 2010

CERN-OPEN-2008-020

CMS: Anomalous Signals in Calorimeters

 in collision data, CMS observes anomalous signals in ECAL and HCAL (now reproduced in simulation and taken into account/corrected in data analysis)

G. Tonelli ICHEP2010

ECAL

Appear mostly in a single crystal In time with collisions but with wider time-spread (also occur in cosmics at a much lower rate) Caused mostly by deposits in APDs by highly ionising secondary particles.

G. Tonelli, CERN/INFN/UNIPI

ICHEP10 Paris

Random, low rate,

~ 10-20 Hz (E>20 GeV)

Near Future Upgrade Plans for CMS HCAL

(2

Beginning of 2009

 Replaced HPD's with SiPM in HO readout boxes,~150 channels)
 → good operation experiences

Next Stop: 2012 (?)

- Replace HPD's in HO Ring 1,2 project approved by CMS and underway
- Approval procedure for Ring 0 under way

HCAL readout module 4 fibers per tile

Simple replacement of HPD with SiPMs

- Funding from Landes-Excellence Cluster between DESY and University of Hamburg available for HO Ring 0.
- Collaborative effort by DESY, ITEP in Moscow and RWTH Aachen

Information provided by K. Borras

Next Stop: 2016

under discussion:

- Replace all HPD's with SiPM
- Increase longitudinal segmentation 18 → 48/64 in HB & HE (4x) in HF only 2x
- additional TDC measurement improves timing and lepton ID
- Improvements in the readout electronics Front-End (new chips) and Back-end (μ-TCA)
- Changes in the trigger (new electronics, granularity x12)

Even farther in the future: very high Lumi 2020/22(?)

• Replace front HE at high η with Quartz-plates or Thick GEM

Information provided by K. Borras

Depending on approval of third party funding (decision by beginning of November).

- If approved, contribute to
- SiPM : choice of sensor, operation and integration aspects
- \rightarrow synergy with CALICE experience at linear collider
- new Back End (µTCA) electronics
- \rightarrow synergy with CALICE and XFEL

- \bullet Finer granularity \rightarrow weighting algorithms for energy reconstruction studied with stand-alone Monte Carlo
- \rightarrow better resolution & linearity
- \rightarrow implementation in CMS software and further optimization

CMS forward HCAL (HF)

- HF detector: steel absorber structure
- active medium:
 - quartz fibers: fused-silica core and polymer hard-cladding
 - Cherenkov light from quartz fibers is practically insensitive to neutrons and to activation noise
 - \rightarrow fluorine-doped silica cladding more radiation tolerant, replacement considered
- for phase-2 (>2020):
 - maybe complete replacement incl. absorber
 - → Forward Calorimeter Upgrade Task Force (ECAL + HCAL)Upgrading LHC Calorimeters - Arno Straessner

muons which hit phototube window create high energy signals in forward HCAL

replace HF phototubes: •thinner window (<1 mm)

R7600U-200-M4

Four Anode Square PMT

- better shielding (metal envelope)
- 4-way segmented anodes to reject muons hitting PMT window

Information provided by K. Borras

Reminder: high magnetic stray field

- →needed to change the type of PMT almost on the spot
- → re-cycled fine-mesh PMT`s of the SPACAL Calorimeter of the H1 Experiment
- \rightarrow working & physics goals reachable

SPACAL PMT's not radiation hard

- \rightarrow problem for luminosity > 2012
- → need to change PMT's in 2012 to radiation hard version (very expensive)
- → contributions by Turkey, Brazil and newly approved Helmholtz Young Investigator Group in Karlsruhe for Pierre Auger & CASTOR: high energetic cosmic ray & forward hadron flow at LHC (model tuning)

The ATLAS Calorimeter Electronics

Muon Detectors

Tile Calorimeter

- 4 high granularity LAr calorimeters
- 182486 readout channels

front-end and trigger-sum electronics
1524 front-end boards (FEB)

 \rightarrow on-detector in radiation environment

- back-end electronics and more trigger logic
 - 192 read-out driver boards (ROD)
 - \rightarrow shielded counting room

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Liquid Argon Calorimeter

ATLAS LAr Hadronic Endcap Electronics

- front-end electronics of ATLAS Hadronic Endcap (HEC) is mounted inside the cryostat
- ASIC for preamplifier and summing of trigger signals in GaAs 1µm technology
- 0.2 x 10¹⁴ n_{eq}/cm² expected for 10 years at nominal LHC luminosity (~1000 fb⁻¹)
- signal amplitude degrades at ~3 x $10^{14} n_{eq}/cm^2$
- could be at the margin for HL-LHC (+ageing !)

- if HEC electronics must be replaced
- \rightarrow cryostat must be opened
- \rightarrow very delicate and long operation
- new ASIC technologies tested (MPI Munich)
- must operate at room and LAr temperature (87 K) with equal performance

 \rightarrow low power, low noise, stable signal amplitude, small gain variation between channels (<1%)

- candidate technologies:
 - SiGe Bipolar \rightarrow radiation tolerant up to 2 x 10¹⁵ n_{eq}/cm² , but gain is temperature dependent
 - Si CMOS 250/350 nm and GaAs 250 nm
 - \rightarrow radiation tolerant and good temperature stability

Current Limitations of ATLAS LAr Front-End

- main concern:
 - electronics will run >>10 years in 2020
 - qualified for radiation levels of 10 years of normal LHC operation (incl. safety factors)
 - HL-LHC: 300 Gy and $10^{13} n_{eq}/cm^2$
 - small number of spares (6%)

- fixed analog trigger sums
- small analog buffer
 - \rightarrow incompatible with longer L1 latency
 - \rightarrow dead-time
- read-out and trigger concept for HL-LHC:
 - front-end and read-out driver prepare digital data for hardware triggers

New Prototype Design

• R&D baseline:

- shaping and digitization at high rate on front-end board \rightarrow 128 channels at 40 MHz
- transfer rate to off-detector electronics \rightarrow 100 Gb/s per front-end board \rightarrow total 150 Tb/s
- radiation tolerant optical links at ~10 Gb/s
- multi-fiber optical link

- fully digital off-detector trigger
 - \rightarrow digital pipeline on Read-Out Driver (ROD) \rightarrow long latency buffer up to ms
 - \rightarrow fast trigger sums on ROD \rightarrow calorimeter trigger
 - \rightarrow more flexible and higher trigger granularity

- digital part of the readout is based FPGAs (tested: Xilinx Virtex 5+6, Altera Stratix II and IV)
- ongoing R&D by LAPP Annecy, Arizona, BNL, Helmholtz YI Group at TU Dresden
- design and proof-of-principle for high bandwidth readout:
 - ROD prototypes in ATCA form factor with and w/o mezzanine cards (AMC)
 - test of serializer-deserializer:
 - 6.25 Gb/s x 12 = 75 Gb/s achieved
 - digital signal filter design with minimal latency
 - suppress electronic and pile-up noise @ 40 MHz
 - interface for L0/L1 trigger
 - pre-processing of data for L0/L1 input
 - long-latency data buffering
 - interface to DAQ based on standard protocol, e.g. FPGA sending data to server CPU memory via 10 Gb/s Ethernet
- simulation of free-running read-out

New ATLAS Tile Calorimeter Electronics

- new active HV dividers for PMTs \rightarrow more stable signal amplification in dynodes
- prototypes for pre-amplifier, shaper, integrator are being developed (ASIC)
- digital signals for trigger and DAQ

- signal transmission is tested using FPGA, similar to LAr
- protocol based on CERN Gigabit Transceiver (GBT) project

- ATLAS and CMS calorimeters require upgrades
 - of components that do/will not operate as expected (ageing, noise, failures)
 - in high radiation areas \rightarrow mainly endcap and forward region
- LHCb is testing reliability of ECAL calorimeter in testbeam and LHC tunnel
- upgrade plans for 2012/13 and 2016, large uncertainties for 2020 :
 - Technical Proposal by CMS, Letter of Intent by ATLAS
- ongoing R&D:
 - tests of forward and endcap detectors in high radiation environment expected at HL-LHC
 - develop and test sensor technology and electronics individually and in prototypes
 - work on system integration only started for the long-term projects
 - simulation and optimization of detector performance with different upgrade options

LAr Calorimeter Signal

Analog Front-End R&D

- SiGe IBM 8WL BiCMOS process (0.13 micron)
 technology also studied for ATLAS silicon strip tracker readout and ILC detectors
- irraditation tests with spare IBM test structures
- example: final gain after neutron irradiation:
 - β>50 at 10¹⁴ n_{eq}/cm²

- SiGe used for pre-amplifier + shaper:
 - low noise (2.2 nV/√Hz)
 - high dynamic range (16 bit)
 - low power

Preamp and Shaper Prototype Tests

Shaper Input Signal

LAPAS Shaper Output

10X Shaper Differential Output vs Input Chip 1 Ch4

Chip 8 Shaper Post Irradiation Measurements (0, 200krad, 500krad, 1000krad)

Upgrading LHC Calorimeters - Arno Straessner

ATLAS Raditation Hard Optical Links

UltraCMOS[®] Process

p-channel FET

- Silicon-on-Sapphire (SoS) technology:
 - 0.25 µm UltraCMOS by Peregrine Semiconductors
 - low power, low cross talk
 - \rightarrow good for mixed-signal ASIC designs
- TID and SEE radiation tests performed in 2007:
 - gamma irradiation with 60 Co source up to 4 Mrad = 40 kGy

n-channel FET

insulating sapphire substrate

- small leakage currents (250 nA) and small threshold voltage increase
- irraditation in 230 MeV proton beam
 - no SEE observed in shift registers at a flux of 7.7×10⁸ p/cm²/sec
 - still correctly functioning after total fluences of 1.9×10¹⁵ p/cm² (106 Mrad(Si))

ATLAS Link-On-Chip Prototype

3 mm

goal: send data at 10 Gb/s on optical link → need to serialize input data
current prototype manages 5 Gb/s with 3 stage multiplexing and 1 high-performance D-flip-flop

- transmission bit error rate lower than 1×10⁻¹²
- power consumption is below 100 mW/Gbps.
- effort towards a 5 GHz Phase Lock Loop:
 - needed for ultimate goal of a ~10 Gbps link
 - first tests are OK

(jitter, power consumption, locking frequency, ...)

• optimistic for 10 Gb/s

The output clock locks to the input clock.

- new ASIC technologies tested by MPI Munich
- must operate at room and LAr temperature (87 K) with equal performance
 - \rightarrow low power, low noise, stable signal amplitude, small gain variation between channels (<1%)
- candidate technologies:
 - SiGe Bipolar \rightarrow radiation tolerant up to 2 x 10¹⁵ n_{eq}/cm², but gain is temperature dependent
 - would require adjustment at LAr temperature

SiGe bipolar transistors 250 nm IHP process

- Si CMOS FET 250/350 nm technology \rightarrow radiation tolerant and good temperature stability
- GaAs FET 250 nm technology → radiation tolerant and good temperature stability
- SiGe and CMOS will be further pursued

ATLAS sFCal

- solution 1: smaller LAr gaps reduce ion build-up effects and HV drop
- build new sFCal (Cu/LAr) calorimeter with 100 μm gaps instead of 250 μm to replace FCal1
- two on-going R&D projects:
 - test FCal-tube with ⁹⁰Sr foil inside a hollow rod to measure ion-build effects

• test beam measurement of pulse shapes in Protvino/Russia with a high-intensity proton beam

Signal degradation in LAr gap

- critical ionisation rate: rate of newly created Ar+ ions equal to rate in which ions are removed from the gap
- r = rate relative to critical rate
- relative of LAr+ e- recombination rate w
 - w=0 no recombinations
 - $w \rightarrow \infty$ recombination removes practically all Ar+ e- pairs
- signal is obtained from fast-moving e- (Ar+ are slow)

- at high luminosity
 - not all Ar+ are removed from gap \rightarrow ion build-up
 - recombination rate rises \rightarrow slow-rising pulse
 - although HV resistors have high value
 → voltage drop over LAr gap
- amplitude no more proportional to energy deposit

• LAr heating/boiling can possibly be cured with additional LN_2 cooling loops

The ATLAS Tile Calorimeter Electronics

• replacement of gap and cryostat scintillators

- new readout-electronics (same arguments as for LAr read-out)
 - · higher radiation tolerance, normal ageing of components
 - improved trigger capabilities \rightarrow higher granularity

CMS HCAL barrel today

Hybrid Photo Diode

Upgrading LHC Calorimeters - Arno Straessner

CMS HCAL Barrel and Endcap with SiPM

• Silicon Photo Multiplier (SiPM)

- array size 0.5x0.5 mm² up to 5x5 mm²
- pixel size 10 μm to 100 μm
- about 30% quantum efficiency (x 2 of HPD)
- gain ≈ 10⁶ (x 500 of HPD)
- more light (40 photo-electrons/GeV), less photostatistics broadening

I.K. Furic ICHEP2010

• simulated energy response and resolution to single electrons of 200 MeV:

- resolution typically <5% in MiniFCal region
- edge-effects need further studies

Radiation and background - CMS

 radiation dose deposited in CMS inner tracker after 500 fb⁻¹ (~10 years of operation)

Radius	Fluence of fast hadrons	Dose	Charged particle flux
(cm)	$(10^{14} \text{ cm}^{-2})$	(kGy)	$(cm^{-2}s^{-1})$
4	32	840	10 ⁸
11	4.6	190	
22	1.6	70	6×10^{6}
75	0.3	7	
115	0.2	1.8	3×10^{5}

- 1 Gy = 1 Joule/kg
- fast hadron fluence approx. equivalent to 1 MeV neutron equivalent fluence
- during detector design safety factors of ~2 are applied for radiation tolerance
- for non-commercial and commercial electronics: safety factor 2-5
- CMS ECAL after 10 years of nominal LHC:
- 0.5 kGy and 5x10¹³ n/cm² at the outer circumference of the endcaps
- 20 kGy and 7x10¹⁴ n/cm² at $|\eta| = 2.6$
- \rightarrow photo-detectors on the back of the PbW0₄ crystals

- total ionisation dose in Gy/year at L=10³⁴ cm⁻²s⁻¹
- for σ_{MB} =80 mb and one year of 10⁷ s

- non-ionising dose per year
- 1 MeV neutron equivalent fluence at L=10³⁴ cm⁻²s⁻¹

ATLAS & CMS Today

	ATLAS		CMS	
B-Field	2 T (solenoid)	4 T (toroid)	3.8 T (solenoid)	
Tracking	Si (strips+pixel) + gas (TRT)	σ(p _T)/p _T at 100 GeV: 3.8 %	Si (strips+pixel)	σ(p _T)/p _T at 100 GeV: 1.5 %
ECAL	Pb - LAr (high granularity)	σ(E)/E = 9%/√E + 0.7%	PbWO ₄ crystals (high E resolution)	σ(E)/E = 3%/√E + 0.25%
HCAL	Fe – scintillator (10 λ)	σ(E)/E (ECAL+HCAL)= 70%/√E + 3.3%	brass – scintillator (7 λ)	σ(E)/E (ECAL+HCAL)= 70%/√E + 8%
Muon Spectrometer	ion. chambers, air-core magnet	σ(p _T)/p _T at 1TeV: 7 %	ion. chambers, instrumented iron	σ(p _T)/p _T at 1TeV: 5 %

• D. Froidevaux, P. Sphicas, General-purpose Detectors for the Large Hadron Collider, Annu. Rev. Nucl. Part. Sci. 2006. 56:375–440

CMS ECAL endcap crystals

- ionisation reduces light transmission in crystals like PbWO₄
- absorption bands due to colour centres in crystal caused by oxygen vacancies and impurities
- scintillating light produced by hadrons and e.m. particles is not affected
- concerns when exposed to extremely high radiation dose in mixed particle beams

CMS ECAL endcap crystals

hep-ph/0511012

- reduced light transmission is observed in test beam
- not caused by ionising radiation damage but cumulative hadron-specific damage

- expected hadron fluences in ECAL barrel (endcap) after 10 yrs of LHC: 10¹²(10¹⁴) hadrons/cm²
- proton and photon induced damage measured with photo-spectrometer:

• loss in light transmission could be monitored by external light injection \rightarrow crystal calibration

replacement of ECAL endcap crystals is under discussion

LHCb Calorimeter Modules

- LHCb ECAL is a lead/scintillator sampling calorimeter ("shashlik" calorimeter)
- scintillating light is extracted by wavelength-shifting fibers
- photo detection with PMTs

- expected maximum dose at 2x10³² cm⁻²s⁻¹:
 - 2.5 kGy/year in the inner region
- calorimeter built to cope with this radiation level for 10 years
- no reliable information for higher doses
- the problem mainly concerns the inner modules
- idea emerged to make a test in the most realistic conditions \rightarrow LHC tunnel
- in parallel: perform a test (high dose) at Protvino test beam

LHCb Calorimeter Module Irradiation Tests

- installation of 2 modules in the LHC tunnel in September 2009
- close to LHCb interaction point (on the LHC side of the wall of the LHCb cavern)
- modules have been carefully calibrated before installation for future comparison
- dose monitoring by 5 passive and 2 active dosimeters
- results expected soon

Luminosity Leveling

• luminosity evolution today in one fill:

- luminosity leveling:
 - reduced and constant pile-up rate during one fill
- events per crossing LPA 400 crab cavities 300 200 without leveling 100 15 20 25 30 5 10 35 time [h] events per crossing 140 LPA 120 100 80 crab 60 cavities 40 with leveling 205 15 20 25 30 10 35 time [h]

possible luminosity evolution at HL-LHC:

Activities Planned in Shutdown Periods

	2012	2016	2020
LHC machine and injection line	 splices for 7 TeV collimators in IR3 PSB energy upgrade SPS upgrade 	 collimation phase II prepare for crab cavitites new RF cryo system Linac4 connection to PSB PSB energy upgrade PS, SPS consolidation 	 new triplet magnets crab cavities consolidation work on injector complex
Int. luminosity expected at shutdown time	•1fb ⁻¹ @ 7 TeV	•40-100 fb ⁻¹ @ 14 TeV	•300-600 fb ⁻¹ @ 14 TeV
LHC experiments	 ALICE – TID and calorimeter ATLAS – forward beam pipe CMS – forward muon upgrade and consolidation LHCb – conical beam pipe 	 ALICE – new vertex detector ATLAS – pixel detector layer + L1 trigger CMS – forward muon upgrade, HCAL photo detectors, new pixel detector LHCb – full trigger and readout upgrade, new vertex detector 	 ALICE – vertex detector upgrade ATLAS - new inner detector + readout/trigger CMS – new inner detector + readout/trigger LHCb – ECAL?

Pile-up background

- · Pile-up events are from simultaneous pp collisions in the same bunch crossing
- In-time pile-up simply scales with luminosity, cross-section of minimum-bias events, and beamcrossing time (25 ns): $N_{\rm pile-up} = \sigma_{\rm MB} \mathcal{L} \Delta t$
- minimum bias event shapes and particle rates are already studied in current data:

• important background is expected also in forward detector regions up to $\eta \approx |\frac{1}{2} \ln m_p^2/s| = 9.6$

- this needs further measurements, after forward detector performance is well understood
- with this data expectations for high-luminosity running at 14 TeV can be extrapolated using MC models

• recent measurement to very low pT tracks of 100 MeV (corrected to particle level)

different tunings and high-energy extrapolations

- based on tracks: only central region
- forward region should also be studied
- → detector level comparison would already be very useful