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Chapter 1

Introduction

The aim of the lecture series QCD and Monte Carlo techniques is to introduce the basic con-
cepts of Quantum Chromodynamics (QCD) and how this can be used for comparison with
measurements at past and present high energy particle colliders, HERA and the LHC. Since
events produced at high energy collisions contain many particles, most of the calculations
cannot be performed analytically. Even for the calculation of integrals, numerical methods
have to be applied and for complicated multidimensional integrals the Monte Carlo method
is best suited.

While the basic concepts and methods did not change in the last few years, the experi-
mental results and the interest to understand the measurements has changed: HERA and the
LHC have provided a large number of measurements and challenge the theoretical predic-
tions. Calculations at higher order in the expansion of the strong coupling αs were needed
and new methods to perform calculations were developed. In recent years, with the develop-
ment of the Parton Branching Method a direct correspondence of the solution of the evolution
equations, parton density functions and their extension to include transverse momentum
effects (TMDs) was established.

In many measurements obtained from LHC experiments, but also for studies foreseen
at future colliders at the EIC, fixed order calculations are found to be not sufficient and a
resummation to all orders is needed. Some of the measurements at the LHC which are of
particular interest for QCD studies will be discussed.

A warning is needed here: although the lecture will cover Monte Carlo methods, it will
not be a description how to run a given Monte Carlo event generator, nor it will describe
the detailed implementation of QCD processes in Monte Carlo generators. The lectures will
provide the basics to understand the principles of Monte Carlo event simulation and basic
QCD calculations.
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Chapter 2

Monte Carlo methods

The general case of a process A+ B → anything to be calculated is given in fig. 2.1. A more
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Figure 2.1: General case of scattering A+B → anything

detailed figure of the process to be studied is shown in fig 2.2, where on the left side is shown
the lowest order process for jet production in hadron hadron collisions and on the right side
the process is shown including multiparton radiation, which is the subject of this lecture.
It becomes clear, that with many partons1 involved in the calculation this cannot be done
analytically, and numerical methods are needed, one of them is the Monte Carlo method.

2.1 Random Numbers
Monte Carlo method refers to any procedure, which makes use of random numbers and
uses probability statistics to solve the problem2. The Monte Carlo method was invented
and developed in the 1930’s for the calculation of nuclear decays, but nowadays it is widely

1Partons are used as a generic name for quarks and gluons
2The name comes from a saga, that the first true random numbers were obtained by recording the results of

the roulette game in the casino of Monte Carlo.
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Figure 2.2: Left: lowest order process for jet production in hadron hadron collisions. Right:
Process for jet production including multiparton radiation and hadronization

used in any calculation of complicated processes for the simulation of natural phenomena,
simulation of the experimental apparatus, simulation of the underlying physics process but
also in economy for risk analysis etc. Even more, the Monte Carlo method is a precise method
for the calculation of integrals, and it is applied in all calculations of cross sections nowadays.
The Monte Carlo method is a mathematically precise method for estimating integrals. The
basic theorems are the central limit theorem and the limit of large numbers which guarantees
that a Monte Carlo estimate of an integral converges to the tru value of the integral.

Monte Carlo methods make use of random numbers. An example of a random number
is 3 or 4. There is nothing like a random number. Any number can appear to be random. Only
if we have a sequence of numbers, where each number has nothing to do with the other
numbers in the series, we can say the numbers appear to be random.

In the following we consider random numbers always only in the interval [0, 1]. In a
uniform distribution of random numbers in this interval [0, 1] all numbers have the same
chance to appear, note that 0.00000034 has the same chance to appear as 0.5.

Random numbers can be obtained by several methods:

• using a truly chaotic system like roulette, lotto or 6-49

• using a process which is inherently random

• generating "random numbers" on a computer

Examples for random numbers obtained from chaotic processes are using atmospheric noise [1]
or using quantum physics which is intrinsically random [2].

Random numbers generated on a computer are never really random, since they always
are determined according to some algorithm [3]. They may appear random to someone,
who does not know the algorithm. The randomness of random numbers can be checked
by several tests, which will be discussed later. Random numbers, which are generated on
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a computer are called pseudo-random numbers. In contrast, quasi-random numbers are random
numbers which are by intention not random but are designed to be as uniform as possible in
order to minimize the uncertainties in integration procedures.

A simple random number generator (so called multiplicative congruential linear random
number generator) can be build as follows [4][p 40ff] and [5][Vol II,p 9]. From an initial number
I0 we generate a series of random numbers Rj according to:

Ij = mod(aIj−1 + c,m)

Rj =
Ij
m

(2.1)

with a being an multiplicative and c a additive constant and m the modulus3. With this
procedure one obtains a series of number Rj in the interval (0, 1) (note that the values 0 and
1 are excluded). This random number generator will be tested in the exercise. In fig 2.3
the correlation of 2 random numbers is shown on the left side. The right side shows the
same correlation for another random number generator RANLUX [6–8], which will be used
later in the calculations. It is obvious, that the multiplicative congruential linear random number
generator produces random numbers, which show correlations and does therefore not satisfy
quality criteria for a good random number generator; the RANLUX generator seems to be
better.
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Figure 2.3: Left: correlation of two successive random numbers obtained according to 2.1.
Right: correlation of two random numbers obtained with RANLUX [8]

Several criteria on the randomness of a series of pseudo random numbers can be applied to
test the quality of the random number generator [5][Vol II,p 59]:

• statistical test (test uniformity of distributions, frequency test, equi-distribution test)
Divide the interval (0, 1) into k-subintervals with length 1/k. Count how many random

3the modulus function is defined as mod(i1, i2) = i1 − INT (i1/i2) · i2
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numbers fall into the k’s interval [9]. Calculate:

χ2 =
k∑
i=1

(Ni −N/k)2

N/k
(2.2)

with N random numbers Ri. If the random numbers are uniformly distributed, then
Eq. 2.2 is a χ2 distribution with k−1 degrees of freedom and should give χ2/(ndf) ∼ 1,
with ndf being the number of degrees of freedom.

• serial test (pairs of successive random numbers should be distributed in an indepen-
dent way (see fig. 2.3)). The sun comes up just about as often as it goes down, in the long run,
but this does not make its motion random [5][Vol II,p 60].
Count pairs of random numbers (Y2j , Y2j+1) = (q, r) for any 0 ≤ j ≤ n and apply a χ2

test as above.

• sequence up-down test
Count the number of runs, where the random numbers are increasing Yj+1 > Yj . Ex-
ample: take the sequence 1298536704 and insert vertical lines for Yj+1 > Yj , resulting in
|129|8|5|367|0|4|. Count the number of runs-up with length k. The number of runs-up
and the number of runs-down should be similar, but they should not be adjacent: often
a long run will be followed by a short one.

• gap test
Choose two numbers α, β with 0 ≤ α < β ≤ 1. Generate r + 1 random numbers. The
probability that the first r random numbers are outside (α, β) is Pr = p(1 − p)r with
p = β − α being the probability for the r + 1 event to be inside (α, β).

• Random walk test
Choose 0 ≤ α ≤ 1 and generate a large number of random variables Ri. Count how
often Ri < α and call it r. We expect a binominal distribution for r with p = α. The
same test can be performed for Ri > (1− α).

Practical criteria for random numbers can be formulated as follows [3]:

• Long period

• Repeatability
for testing and development one needs to repeat calculations. Repeatability also allows
to repeat only part of the job, without re-doing the whole.

• Long disjoint sequences
for long procedures one needs to be able to perform independent sub-calculations
which can be added later.



2.2. STATISTICS AND PROBABILITIES 11

• Portability
not only the code should be portable but also the results should be the same, indepen-
dent on which platform the calculations are done.

• Efficiency
generation of random numbers should be fast.

To test a random number generator, a series of tests have to be performed. Even if a Random
Number generator passes all n -tests, one cannot assume that it also passes the n+ 1-test.

2.2 Statistics and Probabilities
A very good overview on statistics and probabilities is given in [4,10], which was used for the
discussion in this chapter. In an experiment where the outcome depends on a single variable
x one can ask what is the probability to find values of x in the interval [x, x + dx]. This is
given by f(x)dx with f(x) being the probability density function p.d.f (not to be confused
with the pdf which is used for the parton density function to be discussed later). Since we
assume, there is an experiment with some outcome, the probability to find x anywhere must
be unity, that is: ∫ ∞

−∞
f(x)dx = 1 (2.3)

The p.d.f has to satisfy in addition:

f(∞) = f(−∞) = 0 (2.4)

The expectation value (mean values or average value) of a function h(x) is defined as:

E[h] =

∫ +∞

−∞
h(x)f(x)dx =

∫
h(x)dG(x) =

1

b− a

∫
h(x)dx (2.5)

with f(x) being the probability density function. In the right part of the equation we used the
special case dG(x) = dx/(b − a) for a uniform distribution. In case of discrete distributions
we have:

E[h] =
∞∑
i

h(xi)f(xi) (2.6)

A special case is the expectation value of x (or the mean on the distribution)

E[x] =

∫ +∞

−∞
f(x)xdx

def
= 〈x〉 (2.7)

From the definition of the expectation value we see that E[h] is a linear operator:

E[cg(x) + h(x)] =

∫
(cg(x) + h(x)) f(x)dx

= c

∫
g(x)dx+

∫
h(x)f(x)dx

= cE[g] + E[h] (2.8)
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with c being a constant. Similarly we can see that the expectation value of the expectation
value E[E[g]] is simply E[g]:

E [E[g(x)]] =

∫ (∫
g(x)f(x)dx

)
f(x′)dx′

= E[g(x)]

∫
f(x′)dx′

= E[g(x)] (2.9)

because
∫
f(x′)dx′ = 1 by definition of the p.d.f

The variance σ2 measures the spread of a distribution and can be defined as the mean
quadratic deviation from the mean value. The square-root of σ2 is also called the standard
deviation. The variance V [h] is defined as:

V [h] = σ2 = E
[
(h(x)− E[h(x)])2

]
=

∫
(h(x)− E[h(x)])2 f(x)dx (2.10)

From the definition, the variance V [cg(x) + h(x)] can be calculated:

V [cg(x) + h(x)] =

∫
(cg(x) + h(x)− E[cg(x) + h(x)])2 f(x)dx

=

∫
(cg(x) + h(x)− cE[g(x)]− E[h(x)])2 f(x)dx

=

∫
((c(g − E[g]) + (h− E[h]))2 f(x)dx

=

∫ (
c2(g − E[g])2 + 2c(g − E[g])(h− E[h]) + (h− E[h])2)

)
f(x)dx

= c2V [g] + 2cE[(g − E[g])(h− E[h])] + V [h]

= c2V [g] + V [h] + 2cE[g · h− gE[h]− hE[g] + E[g]E[h]]

= c2V [g] + V [h] + 2c (E[g · h]− E[g]E[h]− E[h]E[g] + E[g]E[h])

V [cg(x) + h(x)] = c2V [g] + V [h] + 2c (E[g · h]− E[g]E[h]) (2.11)

In the case that g(x) and h(x) are uncorrelated, we haveE[g·h] = E[g]E[h] and the expression
simplifies to:

V [cg(x) + h(x)] = c2V [g] + V [h] (2.12)

A special case is the variance of x:

V [x] = E
(
(x− 〈x〉)2

)
=

∫
(x− E[x])2 f(x)dx

= E
[
x2 − 2x〈x〉+ 〈x〉2

]
= E[x2]− 2E[x]〈x〉+ 〈x〉2

V [x] = E[x2]− 〈x〉2

V [x] = E[x2]− E[x]2 (2.13)
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where the relation E[x] = 〈x〉 has been applied.
Consider independent random numbers x1 and x2 with variances V [x1] = σ2

1 and V [x2] =
σ2

2 and mean values µ1 and µ2. The expectation value of the sum of x1 and x2 is:

E[x1 + x2] = E[x1] + E[x2]

= µ1 + µ2 (2.14)

The variance of the sum is (using x = x1 + x2):

σ2 = 〈x− 〈x〉〉
= E[(x− 〈x〉)2]

= E[(x− µ1 − µ2)2]

= E[(x− µ1 + x2 − µ2)2]

= E[(x1 − µ1)2︸ ︷︷ ︸
σ2
1

+2 (x1 − µ1)(x2 − µ2)︸ ︷︷ ︸
0

+ (x2 − µ2)2︸ ︷︷ ︸
σ2
2

]

σ2 = σ2
1 + σ2

2 (2.15)

because E[x1] = µ1, since x1 and x2 are independent. The general form is then:

σ2 =

N∑
i=1

σ2
i (2.16)

Consider now a sample of xi where all xi follow the same probability density function
f(x), having the same variance σ2 and the same µ. The mean of the sample is defined as:

x̄ =
1

N

N∑
i=1

xi (2.17)

The expectation value E[x̄] is given by:

E[x̄] = E

[
1

N

N∑
i=1

xi

]

=
1

N
E

[
N∑
i=1

xi

]

=
1

N
NE[xi]

E[x̄] = E[x] = 〈x〉 (2.18)

resulting in the expectation value of the mean being the mean itself. To obtain above, the
features of the linearity of the operator are applied.
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The variance of the mean is:

V [x̄] = V

[
1

N

N∑
i=1

xi

]

=
1

N2
V
[∑

xi

]
=

1

N2

∑
σ2
i

=
1

N2
Nσ2

V [x̄] =
1

N
σ2 (2.19)

or in the familiar form as the standard deviation of the mean:

σN =
σ√
N

(2.20)

2.3 Random Numbers from arbitrary distributions
Given a sequence of random numbers uniformly distributed in [0, 1] the next step is to deter-
mine a sequence of random numbers x1, x2 . . . distributed according to a probability density
function p.d.f.

The task is to find a suitable function x(r) which gives the same sequence of random
numbers when evaluated with uniformly distributed values r. The probability to obtain a
value r in the interval [r, r + dr] is u(r)dr and this should be equal to the probability to find
x in [x, x+ dx] which is f(x)dx (see fig 2.4):

u(r′)dr′ = f(x′)dx′∫ r

−∞
u(r′)dr′ =

∫ x

−∞
f(x′)dx′

(2.21)

Using a random number R uniform in [0, 1] with R =
∫ r
−∞ u(r′)dr′ we obtain:

R =

∫ x

−∞
f(x′)dx′ = F (x)

with f(x) = dF (x)
dx being the probability density function p.d.f (as defined before) with:∫ ∞

−∞
f(x)dx = 1

f(∞) = f(−∞) = 0

Examples (assuming we have random numbers Rj uniformly distributed in [0, 1]):
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Figure 2.4: Illustration of a(r)dr = f(x)dx. Picture from [4] [p14]

• linear p.d.f: f(x) = 2x.
The primitive function F (x) is:

F (x) =

∫ x

0
f(t)dt =

∫ x

0
2tdt = x2

R = F (x) = x2

xj =
√
Rj

For any uniformly distributed random numbers Rj , the xj values are distributed ac-
cording to the function f(x) = 2x, when calculated as xj =

√
Rj

• exponential p.d.f: f(x, λ) = λ exp(−λx).
The primitive function F (x) is:

F (x) =

∫ x

0
f(t)dt =

∫ x

0
λe(−λt)dt = λ

−1

λ
e(−λt)

∣∣∣∣x
0

= 1− e−λx

−R+ 1 = e−λx

log(1−R) = −λx

xj =
−1

λ
log(Rj)
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The values xj can be generated from a uniform distribution of random numbers Rj
with xj = −1

λ log(1 − Rj) = −1
λ log(Rj) since for a uniform distribution the probability

of occurrence of 1−Rj is the same as for Rj

• p.d.f: f ′(x) = 1/x in the range [xmin, xmax]
The normalization integral is: ∫ xmax

xmin

1

t
dt = log

xmax
xmin

(2.22)

Since this function f ′(x) is not normalized to unity, the normalization factor has to be
included:

f(x) =
f ′(x)

log xmax
xmin

=
1

x

1

log xmax
xmin

(2.23)

The primitive function F (x) is then:

F (x) =

∫ x

xmin

f(t)dt

=
1

log xmax
xmin

∫ x

xmin

1

t
dt =

1

log xmax
xmin

log
x

xmin

R =
log x

xmin

log xmax
xmin

log

(
xmax
xmin

)R
= log

(
x

xmin

)
(2.24)

The values xj can be generated from a uniform distribution of random numbers Rj

with xj = xmin

(
xmax
xmin

)Rj
.

• brute force or hit and miss method:
If there is no easy way to find an analytically integrable function, which can be inverted,
one can use the hit-and-miss method. Assume we want to generate random numbers
according to a function f(x) in the interval [a, b]. The procedure is then the following:
determine the maximum value, the function f(x) can reach in [a, b], which is fmax.
Then select xi uniformly in the range [a, b] with xi = a+ (b− a)Ri with Ri in (0, 1). Use
another random variable Rj also in (0, 1). Decide according to the following, if the pair
Ri, Rj of random numbers is accepted or rejected.

if f(xi) < Rj · fmax  reject
if f(xi) > Rj · fmax  accept

The accepted random numbers xi follow then exactly the distribution of the function
f(x). The only disadvantage of this method is, that depending on the function f(x), it
can be rather inefficient.
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• improvements of the hit and miss method.
Find a function g(x) which is similar to f(x) but which is integrable and invertible,
i.e. G(x) =

∫
g(x)dx and G−1(x) must exist. Then choose a constant such that always

c · g(x) > f(x) for all x. Generate x according to the function g(x) with the methods
described above. Generate another random variable Rj and apply the hit and miss
method as above:

if f(xi) < Rj · c · g(x)  reject
if f(xi) > Rj · c · g(x)  accept

The accepted distribution of variables xi will follow the original function f(x).

2.4 Law of Large Numbers and Central Limit Theorem
The law of large numbers is fundamental for all the considerations above [4, 10, 11]. The law
says, that for uniformly distributed random values ui in the interval [a, b], the sum of the
probability density functions converges to the true estimate of the mean of the function f(x):

1

N

N∑
i=1

f(ui) 
1

b− a

∫ b

a
f(u)du (2.25)

The law of large numbers has been applied in the sections before implicitly. The function
f(x) must satisfy certain conditions: it must be integrable, and it must be finite in the whole
range of [a, b]. The left hand side of eq.(2.25) is a Monte Carlo estimate of the integral on
the right hand side and the law of large numbers says that the Monte Carlo estimate of the
integral is a consistent estimate of the true integral as the size of the random sample becomes
large. At this stage, nothing is said, how large "large" has to be.

The law of large numbers tells that for infinitely large numbers the Monte Carlo estimate
of the integral converges to the true estimate of the integral. The Central Limit Theorem
tells us how the convergence goes for finite number of N . The Central Limit Theorem says
that the sum of a large number of random variables follows a normal distribution (i.e. the
sum of random variables is Gauss distributed), no matter according from which p.d.f the
individual random variables were generated, only the number N must be large enough and
the random variables must have finite expectation values and variances. An example of the
application of the Central Limit Theorem is the construction of a Random Number generator
for Gaussian distributed random numbers, which will be done in the exercises:

• take a sum of uniformly distributed random numbers Ri:

Rn =
n∑
i=1

Ri
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The expectation value and the variance are calculated according to the rules in eq.(2.8,2.11):

E[R1] =

∫
udu =

1

2

V [R1] =

∫ (
u− 1

2

)2

du =
1

12

E[Rn] =
n

2

V [Rn] =
n

12

According to the Central Limit Theorem the sum of random values is Gauss distributed.
To obtain a distribution centered around 0 with σ = 1 we take:∑

i xi −
∑

i µi√∑
i σ

2
i

→ N (0, 1)

For example, if we sum n = 12 random numbers (many times N → ∞), we obtain a
"normal" (Gauss) distribution N [11]:

N (0, 1)→ Rn − n/2√
n/12

= R12 − 6

2.5 Monte Carlo Integration
Already in the previous sections we had to deal with the problem to obtain a reliable estimate
of the true value of an integral [9]:

I =

∫ b

a
f(x)dx

The integral I is directly connected to the expectation value of the function f(x) with the x
values distributed according to a probability density function g(x).

E[f ] =

∫ ∞
−∞

f(x)g(x)dx

where the p.d.f. g(x) must be defined such, that it vanishes outside the range of (a, b). In the
case of uniformly distributed x this reduces to g(x) = 1/(b − a) for a < x < b (and g(x) = 0
otherwise) which gives:

E[f ] =

∫ ∞
−∞

f(x)g(x)dx =
1

b− a

∫ b

a
f(x)dx
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The Monte Carlo estimate of the integral is then:

I ≈ IMC = (b− a)
1

N

N∑
i=1

f(xi) (2.26)

and the variance is:

V [IMC ] = σ2
I = V

[
(b− a)

1

N

N∑
i=1

f(xi)

]
(2.27)

=
(b− a)2

N2
V

[
N∑
i=1

f(xi)

]
(2.28)

=
(b− a)2

N
V [f ] (2.29)

The variance depends on the number of times the integrand is evaluated, but also on the
variance of f : V [f ].

Applying the definition of the variance eq.(2.11), the variance V [f ] becomes (with f̄ =∫
fdx = 1/N

∑
fi and assuming g(x) being uniform):

V [f ] =

∫
(f − f̄)2gdx =

∫
(f2 − 2ff̄ + f̄2)gdx (2.30)

=

∫
f2gdx− f̄2 (2.31)

=
∑ f2

i

N
−
(∑

fi
N

)2

(2.32)

(2.33)

Then the V [I] becomes:

V [I] =
1

N
(b− a)2

(
1

N

∑
f2
i −

(∑
fi

N

)2
)

With this we can estimate the uncertainty of a Monte Carlo integration (use this in the exer-
cises).

The Monte Carlo integration gives a probabilistic uncertainty band: we can only give a
probability that the MC estimate lies within a certain range of the true values [3].

To further improve the accuracy of the Monte Carlo integration, several approaches exist:

• importance sampling
If an approximate function g(x) exists then the integral I can be estimated to:

I =

∫ b

a
f(x)dx =

∫ b

a

f(x)

g(x)
g(x)dx
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=

∫
h(x)g(x)dx

= E

[
f(x)

g(x)

]
provided g(x) is normalized and integrable in [a, b]. Thus the integration reduces to
calculating the expectation value of E[f/g], if the values of x are distributed according
the p.d.f g(x). The values of x can be generated according to the methods discussed in
the previous sections and we obtain:

I =
1

N

∑ f(xi)

g(xi)
(2.34)

We assume that g(x) is a p.d.f normalized to 1 in the integration range. For example
using g(x) = (1/x)1/ log

(
xmax
xmin

)
(see eq.(2.23)) gives then:

I =
log
(
xmax
xmin

)
N

∑ f(xi)
1
xi

. (2.35)

The variance is then given by:

V

[
f(x)

g(x)

]
= E

[(
f(x)

g(x)
− E

[
f(x)

g(x)

])2
]

(2.36)

A danger in this method is when g(x) becomes zero or approaches zero quickly [3].

• subtraction method (control variates) [3]
Find a function g(x) which is close to the true function f(x):∫ b

a
f(x)dx =

∫ b

a
g(x)dx+

∫ b

a
(f(x)− g(x)) dx

This method also reduces the variances and is especially successful if the function f(x)
has a divergent part. This method is often used in next-to-leading order (NLO) QCD
calculations.

• stratified sampling
divide the integration region into subintervals:∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx (2.37)

Then the integral is:

I =
c− a
n/2

∑
1

fi +
b− c
n/2

∑
2

fi (2.38)
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with the variance (if we take c− a = b− c = (a− b)/2):

V [I] = V [I1] + V [I2]

=
(b− a)2

N

(∑
1 f

2
i

N
+

∑
2 fi
N

− 2

[(∑
1 fi
N

)2

+

(∑
2 fi
N

)2
])

We obtain a smaller variance, since the fluctuations in each interval are smaller.

• brute force method
The accept-reject method also works for MC integration. Defining I0 as the area in [a, b]
and fmax as the maximum of the function f(x) in this range. With a random number
Ri we generate xi and another random number Rj is used to accept or reject the pair
of random numbers i, j according to:

if f(xi) < Rj · fmax  reject
if f(xi) > Rj · fmax  accept

We count the number of trails with N0 and the number of accepted events with N .
Then we obtain:

I =

∫ b

a
f(x)dx

= I0
N

N0

The variance V [r] = (δ(N))2 = σ2 is (using binomial statistics with V [r] = N0ε(1 − ε)
with ε = N/N0):

V [r] = N(1− ε)

With this we can calculate the uncertainty of the integral estimate δ(I) as:

δI

I
=

I0σ/N0

I0N/N0
=

√
N(1− ε)
N2

=

√
(1− ε)
N
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Chapter 3

Probing the Structure of Matter

The force that keeps matter together is the strong force which is described by the theory
of Quantum Chromo Dynamics (QCD). Basically everything is included in the QCD La-
grangian, which describes the non-abelian nature of QCD.

Probing the structure of matter is in analogy to optics: to resolve objects the wavelength
λ of the probe has to be smaller than the size d of the target: λ < d. In all calculations below
we assume natural units: ~ = c = 1.

For an introduction to the standard model see [12]. Calculations of QCD processes (in-
cluding many the details for the calculation) are described nicely in [13]. A theoretical de-
scription and a discussion on parton showers and Monte Carlo generators is in the Pink
Book [14]. A detailed discussion on parton evolution is given in [15].

3.1 Kinematics and Cross Section definition
3.1.1 Four-Vector Kinematics

Four-vectors are used to characterize fully the state and the motion of a particle.

(E,p)
def
= (p0, p1, p2, p3) = pµ

def
= p (3.1)

A four-vector is defined in a specific frame. Boost (or Lorentz-) invariant quantities can be
defined from four-vectors. The simplest example is the invariant mass of a particle defined
as:

E2 − p2 = m2 (3.2)

Products of four-vectors are Lorentz invariant. The four-vector product is defined as:

A.B
def
= A0B0 −AB (3.3)

In the collision of two particles, p1 and p2 the invariant mass of the system is given by:

s = (P1 + P2)2 = P 2
1 + P 2

2 + 2P1.P2

= M2
1 +M2

2 + 2(E1E2 − ~P1
~P2) (3.4)

23
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In the center-of-mass of the two colliding particles we have |~P1| = |~P2|. Assuming M1 = M2

we get:
s = (P1 + P2)2 = 2M2 + 2(E2 + P 2) (3.5)

with M = M1 = M2, E = E1 = E2 and P = |~p1| = |~p2|. In the case of E �M , we obtain:

s = (P1 + P2)2 = 4E2
b = E2

cm (3.6)

with Eb being the beam energy and Ecm being the center-of-mass energy.
At LHC the energy of the colliding protons was increasing from a start up value of Eb =

450 GeV, giving a center-of-mass energy of
√
s = 900 GeV, to the design energy for each

proton beam of Eb = 3500 GeV giving a center-of-mass energy of
√
s = 13 TeV, the highest

energy achieved in a collider.
If one of the colliding particles is at rest (P2 = (M,~0), in a so-called fixed-target experiment,

the energy available in the collision is (assuming the mass of the other particle to be small
M1 = 0):

s = (P1 + P2)2 = M2 + 2E ·M (3.7)

In a fixed-target experiment with a muon beam of E = 280 GeV colliding with protons at rest,
the available center-of-mass energy squared was s = (P1 + P2)2 ≈ 560 GeV2 which gives√
s = 24 GeV. At HERA, a electron-proton collider at DESY, electrons with an energy of

Ee = 27 GeV were collided with protons of energy of Ep = 920 GeV yielding
√
s ≈ 315 GeV.

3.1.2 Light Cone Variables

Some calculations become easier and the results are easier understood when so-called light-
cone variables instead of the Cartesian variables are used (see for a description and discus-
sion [16]). Any four-vector, defined as:

V = (V 0, V 1, V 2, V 3) = (V 0, V⊥, V
3)

with V⊥ being a two-component vector, can be changed to its lightcone representation:

V + =
1√
2

(
V 0 + V 3

)
(3.8)

V − =
1√
2

(
V 0 − V 3

)
(3.9)

V⊥ = (V 1, V 2) (3.10)

We also have:

V 0 =
1√
2

(
V + + V −

)
(3.11)

V 3 =
1√
2

(
V + − V −

)
(3.12)
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From the definition of a four-vector product in eq.(3.3) we obtain the four-products of two
four-vectors V and W in light-cone representation:

V.W = V +W− + V −W+ − V⊥W⊥ (3.13)
V.V = 2V +V − − V 2

⊥ (3.14)

The light-cone components transform simpler under boosts along the z-axis: only the V ±

components are affected under the boost. When a vector is highly boosted, the light-cone
variables show easily the large and small components.

Sometimes, the light-cone variables are used to define the Sudakov decomposition: p =
p+ + p− + kt where here p± and kt have four components. Let us consider the following
example to calculate the invariant mass of two colliding particles with momenta p1 = p+

1 +
p−1 + kt1 and p2 = p+

2 + p−2 + kt2 with

p+
1 = (p+

1 , 0
−,~0)

p−1 = (0+, p−1 ,
~0)

kt1 = (0+, 0−,~kt1)

and analogously for p2. The invariant mass s = (p1 + p2)2 is then :

s = (p+
1 + p+

2 + p−1 + p−2 + kt1 + kt2)2

= 2(p+
1 + p+

2 )(p−1 + p−2 ) + (kt1 + kt2)2

= 2p+
1 p
−
2

where the last line was obtained since p−1 = p+
2 = 0 and ~kt1 = −~kt2.

Lorentz boost appear very simple in terms of lightcone variables. The boosted vector V
′0

and V
′3 are defined as (with a boost along the z axis with velocity v) :

V
′0 =

V 0 + vV 3

√
1− v2

(3.15)

V
′3 =

vV 0 + V 3

√
1− v2

(3.16)

V
′1 = V 1 (3.17)

V
′2 = V 2 (3.18)

Then we can calculate the boosted lightcone components:

V
′+ =

1√
2

V 0 + vV 3 + vV 0 + V 3

√
1− v2

(3.19)

=
1√
2

(V 0 + V 3)(1 + v)√
1− v2

(3.20)
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=
1√
2

√
(1 + v)(1 + v)

(1− v)(1 + v)

(
V 0 + V 3

)
(3.21)

=
1√
2

√
(1 + v)

(1− v)

(
V 0 + V 3

)
(3.22)

and similarly for V
′− with

V
′− =

1√
2

√
(1− v)

(1 + v)

(
V 0 − V 3

)
(3.23)

Defining

ψ =
1

2
log

1 + v

1− v
one obtains

eψ = e
1
2

log 1+v
1−v =

√
1 + v

1− v
and thus

V
′+ = V +eψ (3.24)

V
′− = V −e−ψ (3.25)

Consider a particle at rest with
prest = (

m√
2
,
m√

2
, 0)

which is obtained from p = (m, 0, 0) in Cartesian coordinates. In a moving frame the mo-
mentum becomes:

p′ = (p
′+, p

′−, 0) =

(
m√

2
eψ,

m√
2
e−ψ, 0

)
with

p
′+

p′−
= e2ψ

 log
p
′+

p′−
= 2ψ

we obtain the expression for rapidity:

ψ = y =
1

2
log

p
′+

p′−
(3.26)
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3.1.3 Cross Section definition

In general, the cross section of the scattering of two particles p1 and p2 with masses m1 and
m2 into any number of final state particles pi is defined as:

dσ =
1

flux
· dLips · |M |2

where |M |2 is the squared matrix element, which contains the physics, flux is the flux of the
incoming particles defined as:

flux = 4
√

(p1p2)2 −m2
1m

2
2 (3.27)

and dLips is the Lorentz-invariant-phase-space defined as

dLips = (2π)4δ4

(
−p1 − p2 +

∑
i

pi

)∏
i>2

d4pi
(2π)3

δ
(
p2
i −m2

i

)
(3.28)

= (2π)4δ4

(
−p1 − p2 +

∑
i

pi

)∏
i>2

d3pi
(2π)32Ei

(3.29)

= (2π)4δ4

(
−p1 − p2 +

∑
i

pi

)∏
i>2

1

(2π)3

dp+
i

p+
i

d2pt i (3.30)

The cross section for a 2→ 2 process of p1+p2 → p3+p4 can be written as (assuming massless
incoming particles) :

dσ

dt
=

1

16π

1

s2
|M |2 (3.31)

If one particle has mass, like the virtual photon with virtual mass Q2, then the formula is
modified to (for p2

1 = −Q2) :

dσ

dt
=

1

16π

1

s+Q2

1

s
|M |2 (3.32)

with s, t being the Mandelstam variables:

s = (p1 + p2)2 = (p3 + p4)2 (3.33)
t = (p1 − p3)2 = (p2 − p4)2 (3.34)
u = (p1 − p4)2 = (p2 − p3)2 (3.35)

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (3.36)
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3.2 The Quark Parton Model
In analogy to optics, photons can be used to probe the structure of matter. In quantum
theory every particle has a particular wave-length, so any particle with a small enough wave-
length can be used as a probe to measure the structure of a target: photons from electron or
muons, W/Z bosons and also jets produced in high energy collisions can be used to extract
information on the colliding hadrons.

In the following the structure of the proton as tested in Deep Inelastic Scattering (DIS)
of electrons (or muons) on a proton target (fig. 3.1) will be discussed. The following invari-

γ

p

q

e
e’

Figure 3.1: General diagram for DIS scattering e+ p→ e′ +X

ant quantities can be defined (here the electron four-vector is denoted with e, the scattered
electron with e′ and the proton four vector with p):

s = (e+ p)2 (3.37)

q2 = (e− e′)2 def
= −Q2 (3.38)

y =
p.q

p.e
(3.39)

xBj =
Q2

2p.q
(3.40)

If we neglect the electron and proton masses, then we obtain:

Q2 = x · y · s (3.41)
W 2 = (q + p)2 = −Q2 + 2q.p

= −Q2 + y s = −Q2 +
Q2

x
(3.42)

with q being the photon-(γ) four-vector. The "invariant mass" (or vrituality) of the photon is
given by Q2 = −q2, the "energy" of the photon is given by y which reduces to y = 1− E′/E
in the proton rest frame with E (E′) being the energy of the electron (scattered electron) in
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the proton rest frame. The quantity xBj is called x-Bjorken after its inventor James Bjorken in
1969 [17]. In the quark parton model (QPM) (and only there) xBj can be associated with the
momentum fraction the quark takes from the proton momentum (as we will discuss later).
This interpretation is only true in the QPM in DIS, but not if higher orders are included nor
in hadron-hadron scattering.

Deep inelastic scattering is defined by:

Q2 � m2
p deep

W 2 � m2
p inelastic

where mp is the proton mass.
The general form of the cross section in DIS is given by (see [12, 14]):

dσ ∼ LeµνWµν (3.43)

with the leptonic Lµνe and hadronic Wµν tensors given by:

Lµνe =
1

2
Tr((/e′ +m)γµ(/e+m)γν) (3.44)

Wµν = −W1g
µν +

W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν) (3.45)

where the structure functions Wi are introduced to parametrize our ignorance about the de-
tails of the structure of the proton. On very general grounds, assuming current conservation
and symmetries only two out of the five structure functions W are independent (for unpo-
larized scattering). After a bit of algebra and rewriting using W1 = F1 and νW2 = F2 with
ν = Q2+W 2−M2

2M , we obtain the master formula for DIS scattering [14][p 89] :

dσ

dxdQ2
=

4πα2

Q4

[(
1 + (1− y)2

)
F1 +

(1− y)

x
(F2 − 2xF1)

]
=

2πα2

xQ4

[(
1 + (1− y)2

)
F2 −

y2

2
FL

]
(3.46)

where in the second line the longitudinal structure function FL = F2−2xF1 is introduced. In
case of purely transverse polarized photon interactions the Callan-Cross relation gives F2 =
2xF1. The structure functions F1, F2 and FL are what can be measured in experiment and
what will be the subject in the following sections.

The early measurements of Deep Inelastic Scattering led to the interpretation of the struc-
ture function F2 in terms of the quark-parton model (QPM) where the proton is seen as com-
posed of objects, the quarks and gluons (generically called partons). Inelastic scattering is
interpreted as a incoherent superposition of scatterings on the individual partons. These
partons (quarks) are supposed to be quasi-free such that any interaction between them can
be neglected. A very nice and understandable discussion of this is in the original article by
J. Bjorken and E. Paschos [17].
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Whether the partons can be regarded as free during the interaction can be estimated by
calculating the interaction and fluctuation time in DIS scattering (as done in the original
paper [17]). If the interaction time τi is small compared to the fluctuation time τf in which a
particle can fluctuate into partons, then the partons can be considered as free.

Assume scattering at large energies in the center-of-mass frame of the electron-proton
system, where the electron mass can be neglected (see fig 3.2).

q

q

γ

Figure 3.2: The proton in the high energy center-of-mass frame (or in the infinite momentum
frame) looks like a pancake. The interaction time is small compared to the time where a
parton can fluctuate into others (qq).

As an example, we let the proton split into two partons q1 and q2 with momentum frac-
tions x of the proton momentum P = (Ep, ~p):

q1 = xP

q2 = (1− x)P

The electron has four-momentum e = (Ep, ~p) and the photon has momentum q = e− e′ with
e′ being the four momentum of the scattered electron. We now calculate the interaction time
τi = 1/∆Eelectron = 1/Eγ . From energy momentum conservation we get e′ = e− q and

e′2 = (e− q)2 = e2 − 2e.q + q2

Since e2 = e′2 = m2
e → 0, we obtain with Q2 = −q2

0 = −2e.q −Q2

and

Q2 = −2e.q = −2 (EγEp + ~pp~q) (3.47)
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where we have used the relations Ee = Ep (for mp = m0 = 0) and ~pp = −~pe valid in the
center-of-mass frame. Using x = Q2/(2p.q) together with p.q = EγEp − ~pp~q we can write:

Q2

2x
= EγEp − ~pp~q

~pp~q = −Q
2

2x
+ EγEp

Inserting this into eq.(3.47) we obtain:

Q2 = −2EγEp +
2Q2

2x
− 2EγEp (3.48)

 Q2

(
1− 1

x

)
= −4EγEp (3.49)

 Eγ = −
Q2
(
1− 1

x

)
4Ep

(3.50)

The next step is to calculate the fluctuation time ∆Eqq which is the energy of the qq pair.

∆Eqq = E1 + E2 − Ep

With q1 = (E1,~kt, xEp) and q2 = (E2,−~kt, (1− x)Ep) using
√

1 + x ≈ 1 + (1/2)x+ · · ·we
obtain:

E1 =
√

(xEp)2 + k2
t = xEp

√
1 +

k2
t

(xEp)2

≈ xEp

(
1 +

1

2

k2
t

(xEp)2
+ · · ·

)
E2 =

√
((1− x)Ep)2 + k2

t = (1− x)Ep

√
1 +

k2
t

((1− x)Ep)2

≈ (1− x)Ep

(
1 +

1

2

k2
t

((1− x)Ep)2
+ · · ·

)

Inserting the above into the expression for ∆Eqq

∆Eqq = E1 + E2 − Ep

= xP +
1

2

k2
t

xEp
+ (1− x)Ep +

1

2

k2
t

(1− x)Ep
− Ep

=
1

2

(1− x)k2
t + xk2

t

x(1− x)Ep

=
1

2

k2
t

x(1− x)Ep
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With

τf =
1

∆Eqq
=

2x(1− x)Ep
k2
t

≈ 2xEp
k2
t

(3.51)

τi =
1

∆Eee′
=

1

Eγ
=

4Ep

Q2
(

1−x
x

) ≈ 4xEp
Q2

(3.52)

where the last approximation is done for x� 1. We now have:

τinteraction
τfluctuation

≈ 4xP

Q2

k2
t

2xEp
=

2k2
t

Q2
(3.53)

Thus, for small kt ( k2
t � Q2) the interaction time is much smaller than the fluctuation time,

and the partons can be considered as frozen and therefore behave as free partons.
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3.3 Cross Section in DIS
In the previous section we have seen that the partons inside the proton can be considered
free as long as transverse momentum squared k2

t is small compared to Q2.
In the following we calculate the cross section for eP → e′X from the partonic cross

section epq → e′p′q with pq being the four-momentum of any type of quark with momentum
fraction ξ such that pq = ξP . The Mandelstam variables are then:

ŝ = (e+ pq)
2 = 2e.pq (3.54)

û = (pq − e′)2 = −2pqe
′ (3.55)

t̂ = (e− e′)2 = −Q2 (3.56)
(3.57)

The matrix element squared for epq → e′p′q is [12][p 124]:

|M |2 = 2e2
q(4πα)2 ŝ

2 + û2

t̂2
(3.58)

with eq being the electric charge of the parton. Using the DIS variables (see eq.(3.37)) with
q = e− e′ gives:

y =
q.P

e.P
=
q.pq
e.pq

= 1− e′.pq
e.pq

= 1 +
û

ŝ
(3.59)

The matrix element can then be expressed as:

|M |2 = 2e2
q(4πα)2 1

Q4

(
ŝ2 + ŝ2(y − 1)2

)
(3.60)

= 2e2
q(4πα)2 ŝ

2

Q4

(
1 + (1− y)2

)
(3.61)

With this we obtain the cross section:
dσ

dt̂
=

dσ

dQ2
=

1

16πŝ2
|M |2 (3.62)

=
2e2
q(4πα)2ŝ2

16πŝ2

1

Q4

(
1 + (1− y)2

)
(3.63)

=
(
2πα2e2

q

) 1

Q4

(
1 + (1− y)2

)
(3.64)

Before we compare this expression to the cross section for DIS of eq.(3.46) we investigate
the meaning of ξ. Using the mass-shell condition (the quarks are assumed to be massless)
we obtain:

p
′2
q = (pq + q)2 = q2 + 2pq.q + p2

q (3.65)

= −Q2 + 2pq.q = −Q2 + 2ξP.q (3.66)
= −2P.q · x+ 2ξP.q (3.67)
= −2P.q(x− ξ) (3.68)
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thus, we find x = ξ for massless partons p2
q = p

′2
q = 0. Using∫

dxδ(x− ξ) = 1

we can rewrite eq.(3.64) as:

dσ2

dxdQ2
=

(
4πα2

) 1

Q4

(
1 + (1− y)2

)
e2
q

1

2
δ(x− ξ) (3.69)

Now we can compare eq.(3.69) with eq.(3.46) and find:

F̂1 =
1

2
e2
qδ(x− ξ) (3.70)

F̂2 = 2xF̂1 = xe2
qδ(x− ξ) (3.71)

Thus the structure function F̂2 gives the probability to find a quark with momentum fraction
x = ξ.

However, measurements have shown that the structure function F2 is not a δ-function
but rather a distribution, telling that the partons inside the proton carry a range of momen-
tum fractions. Thus we are forced to introduce a distribution q(ξ)dξ which represents the
probability to find a quark carrying a momentum fraction ξ in the range ξ and ξ + dξ within
0 ≤ ξ ≤ 1.

The proton structure functions Fi are obtained by weighting the quark structure functions
F̂i with the probability density functions q(ξ):

F2(x) = 2xF1(x) =
∑
q,q̄

∫
dξq(ξ)x · e2

qδ(x− ξ) (3.72)

=
∑
q,q̄

e2
qxq(x) (3.73)

Since there are different quark species in the proton, the electromagnetic structure func-
tion as obtained by scattering a charged lepton on a proton is:

F em2 (x) = x

[
4

9
(u+ ū+ c+ c̄) +

1

9
(d+ d̄+ s+ s̄+ b+ b̄)

]
(3.74)

with u, ū, ... being the quark (antiquark) density functions.
Since the proton is build from two uv-type and one dv-type valence quarks, one can define

the following number sum rules: ∫ 1

0
dx uv(x) = 2 (3.75)∫ 1

0
dx dv(x) = 1 (3.76)
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Figure 3.3: The photon-proton cross section as a function of Q2 for different values of x
extracted from DIS scattering e+ p→ e′ +X at HERA [18].

However it was found from experiment that the momentum sum over all quarks gives only
about 50 % of the proton momentum:

∫ 1
0 dx x

∑
i qi(x) ∼ 0.5 (note the relation to expectation

values as discussed in the first chapter). If the QPM picture is correct, the remaining 50 % of
the proton momentum is carried by partons other than the quarks, namely the gluons, such
that ∫ 1

0
dx x [all pdfs] = 1 (3.77)

The momentum sum rules are subject of the exercises.
In fig. 3.3 the measurement of F2(x,Q2) as a function of Q2 obtained at HERA [18] is

shown. In fig. 3.4 the parton density functions for quarks and gluons as obtained from the
measurement of F2(x,Q2) is shown. The measurements show, that the structure function F2

depends also on Q2, which is not predicted in the simple QPM. These scaling violations are
subject of the next sections.
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Figure 3.4: The parton density functions as a function of x extracted from DIS scattering
e+ p→ e′ +X at HERA [18].

3.4 The photon-proton cross section
The cross section for e + pq → e′ + p′q can be separated into two parts: the part at the lepton
vertex and the part at the quark vertex. In the following we calculate the cross section for
γ∗pq → p′q. The matrix element for γ∗pq → p′q can be found in [12][section 10.2]:

|M |2 = 2e2
qe

2pq.q

= 8παe2
qpq.q

with α = e2/(4π). We introduce

z =
Q2

2q.pq
(3.78)

The cross section is then:

σ =

∫
1

flux
dLips |M |2 (3.79)
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= 2παe2
q · 2πδ((pq + q)2) (3.80)

= 2παe2
q · 2πδ(2pq.q(1− z)) (3.81)

=
4π2α

2pq.q
e2
qδ(1− z) (3.82)

where we have used z = Q2/(2q.pq) and for the flux:

flux = 4
√

(pq.q)2 −m2
1m

2
2 (3.83)

= 4pq.q (3.84)

and for dLips using (q + pq)
2 = −Q2 +Q2/z:∫

dLips = (2π)4

∫
δ4(−pq − q + p′q)

d4p′q
(2π)3

δ(p
′2
q −m2

q′) (3.85)

= 2πδ(p
′2
q ) (3.86)

= 2πδ((pq + q)2) (3.87)

We now compare the full expression for e + pq → e′ + p′q as given in eq.(3.69) with the
cross section for γ∗pq → p′q of eq.(3.82):

dσ2

dxdQ2
=

(
4πα2

) 1

Q4

(
1 + (1− y)2

)
e2
q

1

2
δ(x− ξ) (3.88)

=
α

2πQ2

(
1 + (1− y)2

) 4π2α

Q2
e2
q

1

ξ
δ

(
x

ξ
− 1

)
(3.89)

=
α

2πQ2

(
1 + (1− y)2

) 4π2α

Q2
e2
q

z

x
δ (z − 1) (3.90)

=
α

2πQ2x

(
1 + (1− y)2

) 4π2α

2pq.q
e2
qδ (1− z) (3.91)

=
α

2πQ2x

(
1 + (1− y)2

)
σ0(z)e2

qδ (1− z) (3.92)

where we have used zξ = x with x = Q2/(ys). With the Jacobean dx
dy = x

y we obtain:

dσ2

dydQ2
=

dσ2

dx dQ2

dx

dy
=

α

2πQ2y

(
1 + (1− y)2

)
σ0(z)e2

qδ (1− z) (3.93)

We can now separate the photon flux Fγ(y,Q2) from the hadronic interaction. This is also
called the equivalent photon approximation:

dσ2

dydQ2
= Fγ(y,Q2)

4π2α

Q2
e2
qF2

Fγ(y,Q2) =
α

2πQ2y

(
1 + (1− y)2

)
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3.5 O(αs) contribution to DIS
We can apply now the method of factorizing the photon flux from the hadronic part to cal-
culate the O(αs) contributions to the total DIS cross section., We have to consider the QCD
Compton (QCDC) e + q → e′ + q′ + g and the boson-gluon fusion (BGF) e + g → e′ + q + q̄
processes. By separating the lepton vertex from the hadron vertex, the calculations can be
significantly simplified, since instead of a 2 → 3 process we just need to calculate the 2 → 2
subprocess (Fig. 3.5).

BGF

e
e’

γ

p

QPM QCDC QCDC BGF

Figure 3.5: The O(αs) contributions to e+ p→ e′X .

The matrix elements for both QCDC and BGF are singular in t̂. Since we are interested in
the dominant contribution to the cross section, we can take the limit of t̂ → 0. We express t̂
with the transverse momentum kt. After some algebra we obtain (the explicit calculation is
shown in the appendix 8.1):

k2
t =

t̂ûŝ

(ŝ+Q2)2
(3.94)

using z = Q2/(2q.p2) where q (p2) are the photon (parton) four-momenta, we obtain in the
limit of small t̂ (with û = −Q2 − ŝ):

k2
t = −t̂(1− z) (3.95)

The cross section is then given by (for kt → 0):

dσ

dk2
t

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
|M |2 (3.96)

3.5.1 QCDC process

The matrix element for the QCD Compton process is given in [12][section 10.4]. Here we
concentrate isolateing the dominant part of the matrix element (small t̂ approximation) with
ŝ = (q + p2)2 = −Q2 + 2q.p2 = Q2

z (1− z) :

|M |2 = 32π2
(
e2
qααs

) 4

3

[
−t̂
ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

]
(3.97)
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= 32π2
(
e2
qααs

) 4

3

−1

t̂

[
ŝ− 2Q2(−Q2 − ŝ)

ŝ
− 2Q2(−t̂)

ŝ
+
t̂2

ŝ

]
(3.98)

 small t̂ approximation (3.99)

≈ 32π2
(
e2
qααs

) 4

3

−1

t̂

[
ŝ+

2Q2(Q2 + ŝ)

ŝ
+ · · ·

]
(3.100)

= 32π2
(
e2
qααs

) 4

3

−1

t̂

[
ŝ+

2Q2

1− z
+ · · ·

]
(3.101)

= 32π2
(
e2
qααs

) 4

3

−1

t

[
Q2(1 + z2)

z(1− z)
+ · · ·

]
(3.102)

= 32π2
(
e2
qααs

) (1− z)
k2
t

Q2

z
Pqq(z) (3.103)

where we have introduced the splitting function Pqq(z) with z = Q2

2q.pq
:

Pqq =
4

3

1 + z2

1− z
(3.104)

Inserting eq.(3.103) into eq.(3.96) we obtain:

dσ

dk2
t

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
|M |2 (3.105)

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
32π2

(
e2
qααs

) (1− z)
k2
t

Q2

z
Pqq(z) (3.106)

=
4π2α

ŝ
e2
q

αs
2π

1

k2
t

Pqq(z) (3.107)

= σ0e
2
q

αs
2π

1

k2
t

Pqq(z) (3.108)

In order to obtain the contribution to the total cross section, we must integrate over kt:

σQCDC =

∫ ktmax

ktmin

dk2
t

dσ

dk2
t

(3.109)

= σ0 e
2
q

αs
2π
Pqq(z) log

k2
tmax

k2
tmin

(3.110)

where ktmax is the maximal pt that can be reached:

k2
tmax =

ŝ

4
=
Q2(1− z)

4z
(3.111)

The integral in Eq.(3.110) is divergent for ktmin → 0, therefore we need to introduce a lower
(artificial) cut, ktmin = κ. We then obtain:

σQCDC = σ0 e
2
q

αs
2π
Pqq(z) log

Q2(1− z)
4zκ2

+ · · ·
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= σ0 e
2
q

αs
2π
Pqq(z)

[
log

Q2

κ2
+ log

1− z
4z

+ · · ·
]

In order to obtain a measurable cross section, we must include the parton density func-
tions. We recall also the QPM result:

σQPM = σ0e
2
q

∫
δ(1− z) fq(ξ)δ(x− zξ)dz dξ (3.112)

σQPM = σ0e
2
q

∫
dξ

ξ
fq(ξ)δ

(
x

ξ
− 1

)
(3.113)

(3.114)

and for QCDC:

σQCDC = σ0e
2
q

αs
2π

∫
fq(ξ)δ(x− zξ)dz dξPqq(z)

(
log

Q2

κ2
+ log

1− z
4z

+ · · ·
)

(3.115)

σQCDC = σ0e
2
q

αs
2π

∫
dξ

ξ
fq(ξ)Pqq

(
x

ξ

)(
log

Q2

κ2
+ log

1− z
4z

+ · · ·
)

(3.116)

We can relate this with the expression for the structure function F2(x,Q2) (see eq.(3.46):

σγp =
4πα

Q2
F2(x,Q2) =

F2(x,Q2)

x
σ0 (3.117)

F2

x
=
σγp

σ0
=

∑
e2
q

∫
dξ

ξ
fq(ξ)

[
δ

(
1− x

ξ

)
+ (3.118)

αs
2π
Pqq

(
x

ξ

)[
log

(
Q2

κ2

)
+ log

(
1− z

4z

)
+ ...

]
+ Cq(z, ..)

]
(3.119)

3.5.2 BGF process

The matrix element for the boson gluon fusion process γ∗g → qq̄ is given in :

|M |2 = 32π2
(
e2
qααs

) 1

2

[
û

t̂
+
t̂

û
− 2ŝQ2

t̂û

]
(3.120)

 small t̂ approximation (3.121)

= 32π2
(
e2
qααs

) 1

2

1

t̂

[
û− 2ŝQ2

û

]
(3.122)

= 32π2
(
e2
qααs

) 1

2

1

t̂

[
−(Q2 + ŝ) +

2ŝQ2

Q2 + ŝ

]
(3.123)

= 32π2
(
e2
qααs

) 1

2

−1

t̂

[
(Q2 + ŝ)2 − 2ŝQ2

Q2 + ŝ

]
(3.124)
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= 32π2
(
e2
qααs

) 1

2

−1

t̂

[
Q4 + ŝ2

Q2 + ŝ

]
(3.125)

= 32π2
(
e2
qααs

) 1

2

−1

t̂

Q2

z

[
z2 + (1− z)2

]
(3.126)

Inserting eq.(3.126) into eq.(3.96) we obtain:

dσ

dk2
t

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
|M |2 (3.127)

=
1

16π

1

ŝ+Q2

1

ŝ
32π2

(
e2
qααs

) 1

2

Q2

z

1

k2
t

[
z2 + (1− z)2

]
(3.128)

= πααse
2
q

1

ŝ

1

k2
t

[
z2 + (1− z)2

]
(3.129)

= σ0e
2
q

αs
2π

1

k2
t

[
1

2

(
z2 + (1− z)2

)]
(3.130)

= σ̂0e
2
q

αs
2π

1

k2
⊥

[Pqg(z)] (3.131)

where we have introduced the splitting function Pqg:

Pqg =
1

2

(
z2 + (1− z)2

)
(3.132)

Integrating the cross section eq(3.131) over kt we obtain (in analogy to the QCDC process):

σBGF = σ0 e
2
q

αs
2π
Pqg(z) log

Q2(1− z)
4zκ2

(3.133)

= σ0 e
2
q

αs
2π
Pqg(z) log

Q2

κ2
+ · · · (3.134)

In the BGF case the parton density is the gluon density (in contrast to the QCDC process).
We rewrite the cross section in terms of F2(x,Q2) and obtain:

σBGF = σ0e
2
q

αs
2π

∫
g(ξ)δ(x− zξ)dz dξPqg(z) log

Q2

κ2
(3.135)

σBGF = σ0e
2
q

αs
2π

∫
dξ

ξ
g(ξ)Pqg

(
x

ξ

)
log

Q2

κ2
(3.136)

Putting everything together we obtain for F2/x:

F2

x
=
σγp

σ0
=

∑
e2
q

∫
dξ

ξ

(
fq(ξ)

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

κ2

)]
(3.137)

+g(ξ)

[
αs
2π
Pqg

(
x

ξ

)
log

(
Q2

κ2

)])
(3.138)
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We are still left with the arbitrary cutoff κ. Now we use a trick to remove it: we define
scale dependent parton densities:

qi(x, µ
2) = q0

i (x) +
αs
2π

∫ 1

x

dξ

ξ

[
q0
i (ξ)Pqq

(
x

ξ

)
log

(
µ2

κ2

)
+ Cq

(
x

ξ

)]
+ ...

g(x, µ2) = g0(x) +
αs
2π

∫ 1

x

dξ

ξ

[
g0(ξ)Pqg

(
x

ξ

)
log

(
µ2

κ2

)
+ Cg

(
x

ξ

)]
+ ... (3.139)

where we have now put the divergent part (κ → 0) into a redefinition of the parton density
with the price that the parton density is now scale dependent with scale µ2. Inserting this
into the equation eq.(3.138), we obtain:

F2

x
=

∑
e2
q

∫
dξ

ξ

(
q(ξ, µ2)

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
+g(ξ, µ2)

[
αs
2π
Pqg

(
x

ξ

)
log

(
Q2

µ2

)])
(3.140)



Chapter 4

Parton evolution equation

Here we will derive the evolution equation for the parton densities in the collinear (small t)
limit, the so called DGLAP evolution equations (named after the authors Dokshitzer, Gribov,
Lipatov, Altarelli, Parisi [19–22]).

The expression for the deep inelastic scattering cross section (or the structure function F2)
including O(αs) corrections is given by:

σγ
∗p

σ0
=
F2

x
=

∑
e2
q

∫
dξ

ξ

(
q(ξ, µ2)

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
+g(ξ, µ2)

[
αs
2π
Pqg

(
x

ξ

)
log

(
Q2

µ2

)])
(4.1)

The cross section for small transverse momenta (or at small t) is divergent, and therefore
gives a dominant contribution to the total cross section. For the price of a scale dependent
parton density we have moved the divergent behavior into the bare (and not observable)
parton densities, with the result that the expression became finite (a procedure called renor-
malization).

Since the γp cross section σγ
∗p (or equivalently the structure function F2) as an observable

cannot depend on the arbitrary scale µ2, we must require, that it is µ2-scale independent. This
is satisfied by the requirement

∂F2

∂µ2
= 0

Using eq.(4.1) (for simplicity we treat here only the quark part, the gluon part is treated
similarly) we obtain:

δF2

δµ2
=

∫
dξ

ξ

(
∂q(ξ, µ2)

∂µ2

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
(4.2)

+q(ξ, µ2)
αs
2π
Pqq

(
x

ξ

)
∂

∂µ2

[
logQ2 − logµ2

])

43
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=
∂q(x, µ2)

∂µ2
+

∫
dξ

ξ

αs
2π
Pqq

(
x

ξ

)
log

Q2

µ2

∂q(ξ, µ2)

∂µ2
(4.3)

+

∫
dξ

ξ
q(ξ, µ2)

αs
2π
Pqq

(
x

ξ

)(
− 1

µ2

)
Now we collect all terms ofO(αs) (note the second term in eq.(4.3 ) is ofO(α2

s) since dq
d log µ2

∼
O(αs) and therefore does not contribute) and we obtain:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)]
(4.4)

Including also the gluon part we obtain:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)
+ g(ξ, µ2)Pqg

(
x

ξ

)]
(4.5)

and similarly for the gluons

dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[∑
i

qi(ξ, µ
2)Pgq

(
x

ξ

)
+ g(ξ, µ2)Pgg

(
x

ξ

)]
(4.6)

The splitting functions are given by:

Pqq =
4

3

(
1 + z2

1− z

)
(4.7)

Pgq =
4

3

(
1 + (1− z)2

z

)
(4.8)

Pqg =
1

2

(
z2 + (1− z)2

)
(4.9)

Pgg = 6

(
1− z
z

+
z

1− z
+ z(1− z)

)
(4.10)

Eq.4.5 and 4.6 are the DGLAP evolution equations in leading order of αs. They describe
the evolution of the parton density with the scale µ2. By knowing the parton density at any
scale µ2, these equations predict the parton density at any other scale. Although we cannot
calculate the parton densities from first principles, these equations allow us to predict the
parton densities at any scale, once they are determined at another scale. In Fig. 4.1 is shown
the comparison of the measurement of the structure function σred(x,Q2) with the prediction
from a DGLAP evolution (for σred(x,Q2) as a function of Q2 see Fig. 3.3). The Reduced cross
section σred(x,Q2) is related to F2(x,Q2) by:

σred =
d2σ

dxdQ2

Q4x

2πα2(1 + (1− y)2
= F2 −

y2

1 + (1− y)2
FL (4.11)

with FL being the longitudinal structure function. The prediction agrees with the measure-
ment remarkably well over several orders of magnitude in x and Q2. This is a real triumph
of the theory.
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Figure 4.1: The reduced cross section σred(x,Q2) as a function of x for different regions in Q2

as measured in DIS scattering e+ p→ e′ +X at HERA [18].

4.1 Conservation and Sum Rules
In the following we investigate further the evolution equations.

4.1.1 Flavor Conservation

The scale dependent quark density as a function of the bare parton density q0 and the scale
dependent divergent part (κ→ 0) can be written as:

q(x, µ2) =

∫ 1

x

dξ

ξ
q0(ξ)

[
δ(1− x

ξ
) +

αs

2π
Pqq

(
x

ξ

)
log

µ2

κ2
+ . . .

]
(4.12)

=

∫ 1

x

dξ

ξ
q0(ξ)q̂(z, µ2) + . . . (4.13)

=

∫ 1

x
dξ

∫ 1

0
dzδ(x− zξ)q0(ξ)q̂(z, µ2) + . . . (4.14)

with

q̂(z, µ2) = δ(1− z) +
αs

2π
Pqq (z) log

µ2

κ2
(4.15)

where we have used z = x
ξ and δ(1− z)dz = δ(1− x

ξ )dz = ξδ(ξ − x)dz.
However, this is not the full expression inO(αs), since we have not yet included virtual gluon
radiation, self-energy insertions on the quark leg and vertex corrections. One can calculate
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the virtual corrections explicitly, but here we use the argument of conservation of quark (and
baryon) number: the integral over z of the quark distribution cannot vary with µ2:∫ 1

0
dz q̂(z, µ2) = 1 (4.16)

For this we redefine the splitting function as:

Pqq(z) = P̂qq(z) + k · δ(1− z) (4.17)

With this we get:∫
dz

[
δ(1− z) +

αs

2π

(
P̂qq(z) + k · δ(1− z)

)
log

µ2

κ2

]
= 1

With log µ2

κ2
6= 0 we obtain ∫ 1

0
dz
αs

2π

(
P̂ (z) + k · δ(1− z)

)
= 0

Some of the splitting functions are divergent for z → 1 and we cannot perform the inte-
gral easily. However we note, that the region z → 1 leads to no real emisson and this has a
final state similar to a virtual contribution to the no-emission diagram. To treat this singu-
larity formally we introduce a ” + ” distribution (similar to the δ-distribution which is only
defined inside an integral): ∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx
f(x)− f(1)

(1− x)
(4.18)

or in general [23]: ∫ 1

0
dxf(x) [F (x)]+ =

∫ 1

0
dx (f(x)− f(1))F (x)

with
∫ 1

0
dx [F (x)]+ = 0

We now use the expression for the quark splitting P̂qq(z) = 1+z2

(1−z)+ :∫ 1

0
dzPqq(z) =

∫ 1

0
dz

[
1 + z2

(1− z)+
+ k · δ(1− z)

]
(4.19)

=

∫ 1

0
dz

1 + z2 − 2

1− z
+ k (4.20)

= k +

∫ 1

0
dz
−(1− z2)

1− z
(4.21)

= k −
∫ 1

0
dz

(1 + z)(1− z)
1− z

(4.22)

= k −
∫ 1

0
dz(1 + z) = k − 3

2
(4.23)
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where in eq.(4.20) the expression f(z)− f(1) = 1− z2 − 2 has been used. Thus we obtain:

Pqq(z) =
1 + z2

(1− z)+
+

3

2
δ(1− z) (4.24)

With this expression for Pqq we ensure that soft singularities are properly cancelled. This
expression is essential to ensure that the sum rules are fulfilled (here for the proton case)
independently of µ2: ∫ 1

0
dxuv(x, µ

2) = 2∫ 1

0
dx dv(x, µ

2) = 1

In Fig. 4.2 the different diagrams which contribute to F2(x,Q2) at O(αs) are shown.

NLO

2F

αs
0

αs
1

αs
2

LO

2
2

not included

+ ...

Figure 4.2: The different diagrams which contribute to F2(x,Q2) atO(αs). Note that atO(αs)
only the interference diagram of O(α0

s ) and the virtual contribution together with the real
O(αs) diagram contribute, while the virtual diagram squared would give O(α2

s ).

4.1.2 Conservation Rules of Splitting Functions

In this section we will check explicitly the conservation of momentum fractions using the
momentum sum rule: ∫ 1

0
dx x

(∑
i

qi(x,Q
2) + g(x,Q2)

)
= 1 (4.25)

to obtain constraints on the splitting functions.
We apply the momentum sum rule and make use of the DGLAP evolution equation for

the quark and gluons:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)
+ g(ξ, µ2)Pqg

(
x

ξ

)]
dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[∑
i

qi(ξ, µ
2)Pgq

(
x

ξ

)
+ g(ξ, µ2)Pgg

(
x

ξ

)]
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Summing over all quark flavors and integrating over logµ2 gives:∫ 1

0
dx x

(∑
i

qi(x,Q
2) + g(x,Q2)

)
=

∫
d logµ2

∫ 1

0
dx

[∑
i

xqi(x, µ
2
0)

+
αs

2π

∫
dξ

ξ

(∑
i

xqi(ξ, µ
2)Pqq + 2nfxg(ξ, µ2)Pqg

)

+xg(x, µ2
0) +

αs

2π

∫
dξ

ξ

(
xg(x, µ2)Pgg + xq(ξ, µ2)Pgq

)]
with nf being the number of flavors. With a change of the order of the integration from∫
dx
∫
dξ to

∫
dξ
∫
dx and using z = x/ξ we obtain:∫ 1

0
dx x

(∑
i

qi(x,Q
2) + g(x,Q2)

)
=

∫ 1

0
dx
∑
i

xqi(x, µ
2
0) + xg(x, µ2

0)

+
αs

2π

∫
d logµ2

∫ 1

0
dz

∫ 1

x
dξ

[∑
i

z ξqi(ξ, µ
2)Pqq

+2nfz ξg(ξ, µ2)Pqg + z ξg(ξ, µ2)Pgg + z ξq(ξ, µ2)Pgq
]

=

∫ 1

0
dx
∑
i

xqi(x, µ
2
0) + xg(x, µ2

0)

+
αs

2π

∫
d logµ2

∫ 1

0
dz

∫ 1

x
dξ

[∑
i

ξqi(ξ, µ
2) (z (Pqq + Pgq))

+ξg(ξ, µ2) (z (Pgg + 2nf Pqg))
]

Since the momentum sum rule has to be satisfied for all µ2, we obtain:∫ 1

0
dz z (Pqq + Pgq) = 0∫ 1

0
dz z (Pgg + 2nf Pqg) = 0

4.2 Collinear factorization
Collinear factorization means that the collinear singularities are factorized into process in-
dependent parton distributions and perturbatively calculable process dependent hard scat-
tering cross sections (or coefficient functions). A detailed discussion on factorization can be
found in [24, 25].

The cross section of scattering process of vector boson V on a hadron h can be written as:

σ(V + h) = fh(µf )⊗ CVa (µf , µr) , (4.26)
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where f is the parton distribution function and CVa is the hard scattering cross section which
is infrared safe and calculable in pQCD. The index a indicates, that this cross section depends
on the type of the incoming partons. In addition, CVa depends on the factorization (µf )
and renormalization (µr) scales, but is independent from long distance effects, especially
independent on the hadron h. For example, in deep inelastic scattering the CVa are the same
for scattering on a pion, proton, neutron etc. The parton distribution function f contains all
the infrared sensitivity and is specific for the hadron h and also depends on the factorization
scale µf . The parton distribution function f are universal and independent on the hard
scattering.

Please note, that the factorization theorems are only proven for a few processes [25]:

• deep inelastic scattering (DIS)

• diffractive deep inelastic scattering

• Drell Yan (DY) production in hadron hadron collisions

• single particle inclusive spectra (fragmentation functions)

For all other processes, factorization is assumed (and it is shown by comparing predictions
with measurements, that this assumption is rather successful).

4.2.1 Factorization Schemes

Different schemes for separating the long from short distance parts are available (factoriza-
tion schemes). The difference between them is, which pieces of the cross section are factor-
ized into the parton density functions. Common schemes are:

• DIS scheme

F2(x,Q2) = x
∑
i

e2
i qi(x,Q

2)

where the index i runs over all parton flavors and q(x,Q2) is the quark (or antiquark)
density. Gluons enter only via the evolution of the quark densities. This formula is
required to hold at all orders in αs. The DIS scheme is obtained from µ2 = Q2.

• MS scheme (modified minimal subtraction)
Only the divergent pieces are absorbed into the quark and gluon densities. The struc-
ture function F2(x,Q2) is then:

FMS
2 (x,Q2) = x

∑
e2
q

∫
dx2

x2

[
qMS(x2, Q

2)

[
δ

(
1− x

x2

)
+
αs
2π
CMS
q

(
x

x2

)]
+gMS(x2, Q

2)
αs
2π
CMS
g

(
x

x2

)]
Once a specific scheme is chosen, it has to be used for both the parton density and the par-
tonic cross section, otherwise inconsistent results are obtained.
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Figure 4.3: The up-quark (left) and gluon (right) densities as a function of x at µ2 = 10 GeV2

obtained in [26] in LO (CTEQ6L) and in NLO in the DIS (CTEQ6D) and MS (CTEQ6M)
scheme [27].

4.3 Solution of DGLAP equations
Several methods exist to solve the DGLAP equations, here we only consider a numerical
solution of the integro-differential equations. We first consider a solution of the evolution
equation at small x and then discuss the more general case.

4.3.1 Double Leading Log approximation for small x

In this section we consider only the limit of small x. In this limit, only the gluon density
contributes with the splitting function Pgg(x) → 6/x. All other contributions are small and
can be neglected. With this the evolution equation eq.(4.6) becomes:

dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
g(ξ, µ2)Pgg

(
x

ξ

)]
(4.27)

This equation can be integrated to give:

xg(x, µ2) = xg(x, µ2
0) +

αs

2π

∫ µ2

µ20

dµ
′2

µ′2

∫ 1

x

dξ

ξ
xg(ξ, µ2′)P (

x

ξ
) (4.28)

= xg(x, µ2
0) +

3αs

π

∫ µ2

µ20

dµ
′2

µ′2

∫ 1

x

dξ

ξ
ξg(ξ, µ2′) (4.29)
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This equation is an integral equation of Fredholm type

φ(x) = f(x) + λ

∫ b

a
K(x, y)φ(y)dy

and can be solved by iteration (Neumann series):

φ0(x) = f(x)

φ1(x) = f(x) + λ

∫ b

a
K(x, y)f(y)dy

φ2(x) = f(x) + λ

∫ b

a
K(x, y1)f(y1)dy1 + λ2

∫ b

a

∫ b

a
K(x, y1)K(y1, y2)f(y2)dy2dy1

This can be written in a compact form:

φn(x) =
n∑
i=0

λiui(x) (4.30)

with

u0(x) = f(x)

u1(x) =

∫ b

a
K(x, y)f(y)dy

un(x) =

∫ b

a
· · ·
∫ b

a
K(x, y1)K(y1, y2) · · ·K(yn−1, yn)f(yn)dy1 · · · dyn

with the solution:

φ(x) = lim
n→∞

qn(x) = lim
n→∞

n∑
i=0

λiui(x) (4.31)

Applying this method to solve the evolution equation for the gluon density at small x eq.(4.29)
with xg(x, µ2

0) = xg0(x) = C, we obtain:

xg1(x, t) =
3αs
π
C

∫ t

t0

d log t′
∫ 1

x
d log ξ =

3αs
π

log
t

t0
log

1

x
C (4.32)

xg2(x, t) =
1

2

1

2

(
3αs
π

log
t

t0
log

1

x

)2

C (4.33)

...

xgn(x, t) =
1

n!

1

n!

(
3αs
π

log
t

t0
log

1

x

)n
C (4.34)

xg(x, t) = lim
n→∞

∑
n

1

n!

1

n!

(
3αs
π

log
t

t0
log

1

x

)n
C (4.35)
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Using the modified Bessel function:

I0(z) =

∞∑
k=0

(1
4z

2)k

(k!)2
=

ez√
2πz

(4.36)

We identify

z = 2

√
3αs

π
log

t

t0
log

1

x

to obtain:

xg(x, t) ∼ C exp

(
2

√
3αs
π

log
t

t0
log

1

x

)
(4.37)
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Figure 4.4: The gluon density from xG(x) = 3(1− x)5 and the DLL result with αs = 0.2 and
t = 10 GeV2.

Please note that this result has been obtained by taking the limit of large double leading
logarithms:

• small x limit in the splitting function which leads to log 1/x
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• small t limit to obtain evolution equation, which leads to log 1/t.

The DLL solution of the evolution equations results in a rapid rise of the gluon density at
small x, however only so-called contributions from strongly ordered (decreasing) values of x
and strongly ordered (increasing) values of t are considered. Note, that the unlimited rise at
small x is of course unphysical, and for a realistic description a sort of taming (or saturation)
of the distribution is required.

4.3.2 From evolution equation to parton branching

In the previous section we have seen how to solve the evolution equation iteratively. By
performing the small x limit, we avoided the difficulties with the soft divergencies at large
x; we did not need to use the plus-prescription of the splitting function.

In this section we now discuss how to solve the full evolution equation and how to treat
the soft limit. The divergency of a soft real emission is cancelled by virtual contributions, that
is, we can define so-called "resolvable" branchings, which are splittings of one into two (or
more) partons, where at least in principle we can resolve the splitting. The "non-resolvable"
branchings consist of a contribution without branching and the virtual contributions. A
detailed discussion of the parton evolution can be found in [14]. The full application of this
idea is described as the Parton Branching method in Refs. [28, 29].

We define a "Sudakov" form factor ∆s:

∆s(t) = exp

(
−
∫
dz

∫ t

t0

αs
2π

dt′

t′
P (z)

)
(4.38)

and use the evolution equation with the "+" prescription (using t = µ2):

t
∂

∂t
f(x, t) =

∫
dz

z

αs
2π
P+(z) f

(x
z
, t
)

Inserting the explicit expression for P+ we obtain:

t
∂

∂t
f(x, t) =

∫ 1

0

dz

z

αs
2π
P (z) f

(x
z
, t
)
− αs

2π
f(x, t)

∫ 1

0
dzP (z) (4.39)

where we have used the definition in eq.(4.18):∫ 1

0
dz
f(z)

z
P+(z) =

∫ 1

0
dz

(
f(xz )

z
− f(x)

)
P (z)

=

∫ 1

0
dz
f(xz )

z
P (z)− f(x)

∫ 1

0
dzP (z)

Using

∂e−a(x)

∂x
= −e−a(x)∂a(x)

∂x
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we obtain:

∂∆s

∂t
= −∆s

[
1

t

∫
dz
αs

2π
P (z)

]
(4.40)

 
t

∆s

∂∆s

∂t
= −

∫
dz
αs

2π
P (z) (4.41)

Inserting this into eq.(4.39) we obtain:

t
∂

∂t
f(x, t) =

∫
dz

z

αs
2π
P (z) f

(x
z
, t
)

+ f(x, t)
t

∆s

∂∆s

∂t
(4.42)

Multiplying eq.(4.42) with 1/∆s and using ∂
∂t

f
∆s

= 1
∆s

∂f
∂t −

f
∆2
s

∂∆s
∂t we obtain:

t

∆s

∂f(x, t)

∂t
− t

∆2
s

f(x, t)
∂∆s

∂t
=

∫
dz

z

1

∆s

αs
2π
P (z) f

(x
z
, t
)

(4.43)

t
∂

∂t

f(x, t)

∆s
=

∫
dz

z

1

∆s

αs
2π
P (z) f

(x
z
, t
)

(4.44)

which is the DGLAP evolution equation in a form using the Sudakov form factor ∆s as
defined in eq.(4.38).

We can now integrate eq.(4.44) to obtain:

f(x, t) = f(x, t0)∆(t) +

∫
dt′

t′
∆(t)

∆(t′)

αs(t
′)

2π

∫
dz

z
P (z)f(

x

z
, t′) (4.45)

where we have used∫ t

t0

∂

∂t′
f(x, t′)

∆s
dt′ =

∫
dt′

t′
1

∆s

αs

2π

∫
dz

z
P (z)f(

x

z
, t′) (4.46)

From eq.(4.45) we can now interpret the Sudakov form factor as being the probability for
evolution without any resolvable branching from t0 to t.

We have been sloppy in defining ∆s(t) in eq.(4.38), as we did not specify the integration
limits for the z integration. In the following we show, that the evolution equation can be
written with an upper limit zM of the z integral. We start from eq.(4.39) with the expansion
of the plus prescription:

t
∂

∂t
f(x, t) =

∫ zM

0

dz

z

αs
2π
P (z) f

(x
z
, t
)

+

∫ 1

zM

dz

z

αs
2π
P (z) f

(x
z
, t
)

−αs
2π
f(x, t)

∫ zM

0
dzP (z)− αs

2π
f(x, t)

∫ 1

zM

dzP (z) (4.47)
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If zM is large enough, then we can replace dz
z f(xz , t) with dzf(x, t) and we obtain:

t
∂

∂t
f(x, t) =

∫ zM

0

dz

z

αs
2π
P (z) f

(x
z
, t
)

+ f (x, t)

∫ 1

zM

dz
αs
2π
P (z)

−αs
2π
f(x, t)

∫ zcut

0
dzP (z)− αs

2π
f(x, t)

∫ 1

zcut

dzP (z)

=

∫ zM

0

dz

z

αs
2π
P (z) f

(x
z
, t
)
− αs

2π
f(x, t)

∫ zM

0
dzP (z) (4.48)

What did we gain ? We needed to treat the singularity at z → 1. For this, we now intro-
duce a upper cut-off zM = 1−ε(µ). Branchings with z > zM are now classified as unresolved:
they involve the emission of undetectable partons [14]. The Sudakov form factor sums vir-
tual and real corrections to all orders; the virtual corrections affect the non-branching proba-
bility are included via unitarity: the resolvable branching probability gives via unitarity the
sum of virtual and unresolvable contributions.

Eq.(4.45) can now be solved by iteration, in the same way as before. The starting function
f0 is just the first term in eq.(4.45). The first iteration f1 involves one branching:

f0(x, t) = f(x, t0)∆(t)

f1(x, t) = f(x, t0)∆(t) +
αs

2π

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫ 1

x

dz

z
P̃ (z)f(x/z, t0)∆(t′) (4.49)

The iteration is illustrated in fig.4.5 The term f0 in eq.(4.49) is illustrated in the left part of

x,t

0

0    0x   ,t
0    0x   ,t

x,t

P(z)t’

z=x/x

Figure 4.5: Schematic representation of the first branchings in an iterative procedure to solve
the evolution equation

Fig. 4.5: the evolution from t0 to t without any resolvable branching. The term f1 in eq.(4.49)
is shown in the right part of Fig. 4.5: there is evolution from t0 to t′ without any resolvable
branching, then at t′ the branching happens, where the splitting is given by the splitting
function P (z); then the evolution continues without any resolvable branching from t′ to t.
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The full solution of the integral equation by iteration is then:

f0(x, t) = f(x, t0)∆(t)

f1(x, t) = f(x, t0)∆(t) +
αs

2π

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z
P̃ (z)f(x/z, t0)∆(t′)

= f(x, t0)∆(t) + log
t

t0
A⊗∆(t)f(x/z, t0)

f2(x, t) = f(x, t0)∆(t) + log
t

t0
A⊗∆(t)f(x/z, t0) +

1

2
log2 t

t0
A⊗A⊗∆(t)f(x/z, t0)

f(x, t) = lim
n→∞

fn(x, t) = lim
n→∞

∑
n

1

n!
logn

(
t

t0

)
An ⊗∆(t)f(x/z, t0) (4.50)

where A =
∫
dz
z P̃ (z) is a symbolic representation of the integral over z and⊗ indicates that a

convolution has to be performed. The eq.(4.50) shows the solution of the DGLAP evolution
equation is a resummation to all orders in αs log t.1

The Sudakov form factor can be interpreted in terms of a probability: it is a poisson
distribution with zero mean P (0, p) = e−p. If the poisson distribution gives the probability
to observe n emissions, then P (0, p) gives the probability for no emission and is the so-called
"non-branching probability". The one-branching probability is given in terms of Poisson
statistics by: P (1, p) = pe−p, which is exactly the first iteration of the evolution equation:

f(x, t) = f(x, t0)∆s(t) +

∫
dz

∫
dx′
∫
dt′

t′
· ∆s(t)

∆s(t′)

αs
2π
P̃ (z)×

×f
(
x′, t0

)
∆s(t

′)δ(x− zx′) (4.51)

where delta function has been introduced to make the different integration steps visible.

4.4 Solution of evolution equation with Monte Carlo method
AS described above, the evolution equations Eqs.(4.45) are integral equations of the Fred-
holm type

f(x) = f0(x) + λ

∫ b

a
K(x, y)f(y)dy

and can be solved by iteration as a Neumann series

f1(x) = f0(x) + λ

∫ b

a
K(x, y)f0(y)dy

1It is interesting to note, that only the 1/(1− z) part of the splitting functions is needed in the Sudakov form
factor. This simplifies the solution process.
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Figure 4.6: Sudakov form factor as a function of the lower scale pt for gluon and quark
splitting functions using αs = 0.2. The upper scale is set to tmax = 100(200) GeV.

f2(x) = f0(x) + λ

∫ b

a
K(x, y1)f0(y1)dy1 + λ2

∫ b

a

∫ b

a
K(x, y1)K(y1, y2)f0(y2)dy2dy1

· · · (4.52)

using the kernel K(x, y), with the solution

f(x) = lim
n→∞

n∑
i=0

fi(x). (4.53)

In a Monte Carlo (MC) solution [28–32] we evolve from t0 to a value t′ obtained from the
Sudakov factor ∆s(t

′) (for a schematic visualisation of the evolution see fig. 4.7). Note that
the Sudakov factor ∆s(t

′) gives the probability for evolving from t0 to t′ without resolvable
branching. The value t′ is obtained from solving for t′:

R = ∆s(t
′), (4.54)

for a random number R in [0, 1].
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Figure 4.7: Evolution by iteration

If t′ > t then the scale t is reached and the evolution is stopped, and we are left with just
the first term without any resolvable branching. If t′ < t then we generate a branching at
t′ according to the splitting function P̃ (z′), as described below, and continue the evolution
using the Sudakov factor ∆s(t

′′, t′). If t′′ > t the evolution is stopped and we are left with
just one resolvable branching at t′. If t′′ < t we continue the evolution as described above.
This procedure is repeated until we generate t’s which are larger than t. By this procedure
we sum all kinematically allowed contributions in the series

∑
fi(x, p) and obtain an MC

estimate of the parton distribution function.
With the Sudakov factor ∆s and using

∂

∂t′
∆s(t

′) = −∆s(t
′)

[
1

t′

] ∫ zM

dzP (z),

we can write the first iteration of the evolution equation as

f1(x, t) = f0(x, t)

+

∫ 1

x

dz′

z′

∫ t

t0

(−d∆s(t
′))P (z′)f0(x/z′, t′)

[∫ zM

dzP (z)

]−1

. (4.55)

The integrals can be solved by a Monte Carlo method [11]: z is generated from

∫ z

zmin

dz′P (z′) = R1

∫ zmax

zmin

dz′P (z′), (4.56)

with R1 being a random number in [0, 1], and t′ is generated from

R2 =

∫ x

−∞
f(x′)dx′ = F (x)
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=

∫ t′ ∂∆s(t
′′)

∂t′′
dt′′

= ∆s(t
′) (4.57)

solving for t′, using z from above and another random number R2 in [0,1].
This completes the calculation on the first splitting. This procedure is repeated until t′ > t

and the evolution is stopped.
With z′ and t′ selected according to the above the first iteration of the evolution equation

yields

xf1(x, t) = xf0(x)∆s(t)

+
∑
i

P̃ (z′i)x
′
if0(x′i, t

′
i)

[∫ zM

dzP̃ (z)

]−1

, (4.58)

with x′i = x/zi.

4.5 The Parton Branching solution of the DGLAP equation
The method described in the previous section can now be applied to provide a Parton Branch-
ing solution of the DGLAP evolution equation [28,29]. For the practical implementation, the
momentum weighted parton distributions are used, instead of the number densities. the ad-
vantage of using momentum weighted distributions is that the momentum sum rule can be
applied, leading to a system of equations where in all terms the Sudakov form factor with
the corresponding splitting function is present (not only for those terms with have a 1/(1−z)
term in the splitting function). The Sudakov form factor is given by (see eq.(4.38)):

∆s(zM , µ0, µ) = exp

(
−
∫ zM

0
dz

∫ µ2

µ20

αs
2π

dµ′2

µ′2
P (z)

)
(4.59)

Details of the Parton Branching method are described in Refs [28, 29].
In Fig. 4.8 we show the prediction of parton densities evolved to a large scale with the

Parton Branching method [28], compared to calculations QCDnum [33]. The predictions of
the Parton Branching method are shown for different values of zM . One can clearly see, that
for values of zM large enough, the predictions reproduce semi-analytical calculations exactly.
This result is important in two aspects:

• the DGLAP evolution equation, solved with the concept of resolvable branchings, re-
produces other solutions of DGLAP if the soft resolution scale zM is large enough

• a iterative solution of the DGLAP equation using Monte Carlo methods based on re-
solvable branchings as a Parton Branching method is equivalent to other solutions of
DGLAP (i.e. QCDnum).
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Figure 4.8: Integrated gluon and down-quark distributions at µ2 = 10 GeV2 (left column)
and µ2 = 105 GeV2 (right column) obtained from the parton-branching solution for different
values of zzM , compared with the result from QCDnum. The ratio plots show the ratio of
the results obtained with the parton-branching method to the result from QCDnum. Figure
taken from [28].



Chapter 5

Transverse Momentum Dependent
parton distributions

In this chapter Transverse Momentum Dependent (TMD) parton distributions will be intro-
duced. For a general overview on TMD parton densities see Ref. [34].

Instead of a formal introduction we start arguing why the transverse momenta, even if
they are small, play a role in the parton evolution. This leads us to introduce an extension
of the evolution equation including a transverse momentum dependence. Since we have
to deal now also with partons emitted during the parton cascade, we need to reconsider
meaning of the evolution scale and give it a physical meaning. For this we will discuss also
the so-called angular ordering, from which we can derive a physical interpretation of zM .

5.1 Why are transverse momenta important for the evolution ?
Consider the process q + p1 → p2 with q2 = −Q2, p2

1 = −k2 and p2
2 = m2. This is the

basic process for DIS scattering, except that now we do not neglect masses and transverse
momenta. We use the definition of xBj = Q2

2q.P . Using energy momentum conservation we
obtain:

(q + p1)2 = p2
2

−Q2 + 2q.p1 − k2 = m2

Using the longitudinal momentum fraction ξ with p1 = ξP , with P being the proton momen-
tum, we obtain:

ξ =
Q2 +m2 + k2

2q.P

ξ 6= xBj

Depending on the values of m2 and k2, ξ can be very different from xBj .

61
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Figure 5.1: The gluon density as obtained from a DGLAP fit using the PYTHIA MC generator
including parton showers.

Transverse momenta (or virtualities) in the initial state are coming from parton evolution:
if a parton splits into two partons, the daughters must have transverse momenta. Therefore
evolving a parton from a starting scale µ2

0 up to a larger scale µ2 involves automatically
transverse momenta, up to the scale µ2. Such effects are visualized by using parton shower
Monte Carlo event generators like PYTHIA [35,36], HERWIG [37–39] , or RAPGAP [40,41]. The
effect of transverse momenta to the parton evolution has been studied in [42]. A DGLAP fit to
the structure function F2(x,Q2) has been performed using the PYTHIA MC event generator.
Without intrinsic transverse momenta and without parton showers the fit to the structure
function gave the same result as the CTEQ6 (LO) PDFs [26]. However when parton showers
were turned on, the parameters for the PDFs were very different. An example of this is
shown in Fig. 5.1

For the correct treatment of the kinematics in a process with multigluon radiation, not
only the transverse momentum is important, but also the mass mrem [43], as illustrated in
Fig. 5.2.

In the following we calculate the relation between the transverse momentum kt and the
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 k  = 0t

mrem

 k  = 0t

mrem

}
a. b.

}

Figure 5.2: Illustration of the importance of the treatment of the mass mrem: in the left only
the proton remnants are included, in the right plot also the contribution of multiparton radi-
ation is considered.

virtuality k2. Consider a photon with light-cone vector q = (0, q−, qt), a gluon with vector
k = (xP+, k−, kt) and the incoming proton with P = (P+, 0, 0). From this we obtain:

q2 = −q2
t

k2 = 2xP+k− − k2
t (5.1)

The mass of the remnant mrem is (with P = k + r with r being the vector of the remnant
system):

P = k + r  r = P − k
m2
rem = (P − k)2 = −2P+k− + k2 = −2P+k− + 2xP+k− − k2

t

= −2P+k−(1− x)− k2
t

 2P+k− = −k
2
t +m2

rem

1− x

 k2 = −x(k2
t +m2

rem) + k2
t (1− x)

1− x

= −k
2
t + xm2

rem

1− x

Thus we see clearly, that with increasing mrem the virtuality is no longer dominated by kt,
and the full history of multiparton radiation must be included in the calculation.
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5.2 kt-dependent Evolution Equation: Parton Branching TMD
In the following we describe an extension of the DGLAP evolution equation including the
dependence on the transverse momenta kt as described by the Parton Branching method
[28]. Solving the evolution equation by an iterative method has also the advantage, that
every single splitting is treated explicitly and kinematic relations can be applied in every
branching, similarly to what is done in a parton shower process. Thus parton distributions
can be obtained, not only depending on x and µ (as in f(x, µ2)), but also depending on
the transverse momentum kt of the propagating parton (as in TMD parton distributions
A(x, kt, µ)).

5.2.1 Angular Ordering

The ordering condition of successive parton emission determines how many partons can be
radiated in a certain region of phase space. Subsequent emissions can be suppressed because
of destructive interference effects. The angular ordering condition takes these interference
effect approximately into account.

We first describe the angular ordering condition [14, 15] for the case of photon radiation
from a e+e− pair, before we discuss the more complicated QCD case. We consider a process
γ → e+e−γ as shown in Fig. 5.3 and we calculate the lifetime of the e+e− pair: ∆t = 1

∆E . We

−

+

p

p’

k

e

e

Figure 5.3: Schematic representation of the angular ordering constraint in e+e− scattering.

use the following lightcone vectors (where we neglect the electron mass me):

p =
1√
2

(p+, p−, 0) =
1√
2

(p+, 0, 0)

p′ =
1√
2

(
(1− z)p+, p−,−kt

)
=

1√
2

(
(1− z)p+,

k2
t

(1− z)p+
,−kt

)
k =

1√
2

(zp+, k−, kt) =
1√
2

(zp+,
k2
t

zp+
, kt)

where k is vector for the emitted photon, p′ is the outgoing electron and p is the vector for the
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intermediate electron, before photon radiation. We calculate the energy imbalance ∆E with:

∆E = p′ + k − p

=
1

2

(
(p′ + k)+ + (p′ + k)−

)
− 1

2
(p+ + p−)

=
1

2

(
p+ +

k2
t

z(1− z)p+
− p+

)
=

1

2

k2
t

z(1− z)p+

 ∆E =
1

2

k2
t

zp+
for z → 0

using:

p′ + k =

(
(1− z)p+ + zp+,

k2
t

(1− z)p+
+

k2
t

zp+
, 0

)
=

(
p+,

zk2
t + (1− z)k2

t

z(1− z)p+
, 0

)
= (p+,

k2
t

z(1− z)p+
, 0)

For small angles we have kt ∼ zp+Θeγ

∆E ∼ 1

2

z2p+ 2Θ2
eγ

zp+
=

1

2
zp+Θ2

eγ =
1

2
kΘ2

eγ

Introducing the transverse wavelength λ−1
⊥ = kt = Θeγk we obtain for the lifetime ∆t:

∆t =
1

∆E
= 2

λ⊥
Θeγ

(5.2)

During the time ∆t, the e+e− pair travels a distance:

ρe
+e−
⊥ = ∆x∆t ∼ Θee∆t = θe+e−

λ⊥
Θeγ

For Θeγ � Θe+e− we obtain:
ρ⊥ < λ⊥

which means that the radiated photon cannot resolve any structure of the e+e− pair, it probes
only the total charge which is zero.

The e− can emit photons if:

ρ⊥ > λ⊥

 Θeγ < θe+e−

which is the angular ordering condition for QED. Outside this region, the cross section for
radiation is suppressed. The concept of angular ordering is known already from cosmic rays
as the "Chudakov effect" (1955).
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p’

k

q

q

+ =
p

Figure 5.4: Schematic representation of radiation from a pair of quarks whose color charge is
non-zero.

In QCD a similar picture emerges, but the radiation of soft gluons from a pair of quarks
is no longer zero (since the color charge is non-zero, and gluons can radiate from gluons),
but the radiation is, as if it were emitted from the parent gluon (see Fig. 5.4). In QCD gluon
emission is allowed:

off q̄ for Θkq̄ < Θqq̄

off q for Θkq < Θqq̄

off parent g for Θkg > Θqq̄

such that soft gluon emission at large angles is suppressed (an explicit calculation can be
found in [14].

In the following we describe how the angular ordering condition is applied to the parton
evolution. The vector of the radiated parton is denoted with q, and the energy component of

E i

E i 1

i+1

i

x

z  x
i

i

i+1
q

q

Figure 5.5: Schematic representation of radiation in an angular ordered region of phase
space.

this vector is given by q0. The energy of the propagating parton is given by E. We define the
transverse momenta as pti = |q0

i | sin Θi (taking partons to be massless) where we define the
splitting variable z = Ei

Ei−1
for the i and (i− 1) parton. Defining qi = pti

1−zi and the angles

Θi =
qi
Ei−1

Θi+1 =
qi+1

Ei
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we obtain:

Θi > Θi−1

 
qi
Ei−1

>
qi−1

Ei−2

 qi >
Ei−1

Ei−2
qi−1 = zi−1qi−1 (5.3)

We finally obtain for the angular ordering:

qmax > znqn, qn > zn−1qn−1, ..., q1 > Q0 (5.4)

The angular ordering condition in Eq.(5.3) gives for z → 0 essentially no constraint on the
values of qi and therefore on pt, allowing for a random walk in pt space, as requested from the
BFKL equation. On the other hand, at large z the angular ordering condition reduces to a
ordering in qi, as requested from the DGLAP evolution equations.

5.2.2 Calculating zM

We have introduced a cut to avoid the divergency when z → 1 via zM = 1 − ε(µ), but we
have not yet specified how this can be calculated. To some extend the value of zM is a matter
of choice, here we give an argument based on the virtualities of the partons involved. We
work in a frame, were all energies are much larger than the starting scale of the evolution
Q0. We use light-cone variables for the partons: p+ = 1/

√
2(E + pz) and we define

z =
p+
b

p+
a

being the splitting variable for a process a → b + c. The light-cone vector satisfies: p2
a =

2p+
a p
−
a − k2

ta. We work in a frame, where kta = 0 and ktb = −ktc = kt. Using conservation of
the "+" and "-" components of the light-cone vectors we obtain:

p−a = p−b + p−c

p2
a

2p+
a

=
p2
b + k2

tb

2p+
b

+
p2
c + k2

tc

2p+
c

 p2
a =

p2
b + k2

tc

z
+
p2
c + k2

tc

1− z

where for the last expression we have used p+
b = zp+

a and p+
c = (1− z)p+

a .
In order to apply this in the evolution equation, we give a physical meaning to the evo-

lution scale µ2, different choices are possible:

• associate the evolution scale µ with the transverse momentum of the emitted parton
(pT -ordering): µ = |ktc|.
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• associate the evolution scale µ with the so-called rescaled transverse momentum (angu-
lar ordering): µ = |ktc|/(1− z).

The final transverse momentum of the propagating parton is calculated as

kt = −
∑
c

ktc . (5.5)

which enables one to determine the corresponding transverse momentum dependent
(TMD) parton distribution A(x, kt, µ), in addition to the inclusive distribution f(x, µ), in-
tegrated over kt ∫

A(x, kt, µ)dkt = f(x, µ) (5.6)

5.2.3 The PB-TMD evolution equation

We can write down now the evolution equation including a dependence on the transverse
momentum by extending the expression of the DGLAP evolution equation eq.(4.45):

A(x,k, µ2) = A(x,k, µ2
0)∆(µ2) +

∫
dq′

q′
∆(µ2)

∆(q′2)

αs(q
′2)

2π

∫
dz

z
P (z)A(

x

z
,k′,q′2) (5.7)

Please note, that the transverse momentum vectors (2-dim vectors) k and q have to be used
to fully treat the transverse momentum dependence.

This evolution equation can be solved as before with iteration using a Monte Carlo method,
the details are described in Ref. [28].

In the previous chapter we have described the solution of the DGLAP evolution equa-
tion using the Parton branching method, and found that the PB solution is equivalent to
semi-analytical solutions if zM is large enough. In Fig. 5.6 we show parton distributions as
a function of the transverse momentum kt for different values of zM , for pT -ordering and
angular ordering conditions.

While for the integrated distributions a large enough zM was enough to obtain stable
and zM -independent results, the transverse momentum distributions show a large zM de-
pendence for pT ordering, while there is no dependence on zM for angular ordering condi-
tions. Please note, if virtuality ordering would be applied, with µ = |ktc|/(1 − z)2, also no
dependence on zM is observed. This result means, that soft gluons, even if they have very
little energy, contribute significantly to the transverse momentum spectrum.

In Fig. 5.7 we illustrate the flavor decomposition, at TMD level, resulting from perturba-
tive evolution. We plot the TMD distributions obtained from the parton branch- ing method
for different flavors, by applying the evolution with appropriate angular-ordering condition.



5.2. KT-DEPENDENT EVOLUTION EQUATION: PARTON BRANCHING TMD 69

Figure 5.6: Transverse momentum gluon distribution versus kt at x = 10−2 and µ = 100 GeV
(upper row), µ = 100 GeV (lower row) for different values of the resolution scale parameter
zM = 1 − 10−3, 1 − 10−5, 1 − 10−8 : (left) angular ordering; (right) transverse momentum
ordering. Figure taken from [28].
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Figure 5.7: Transverse momentum gluon distribution versus kt at x = 10−3 and µ = 10 GeV
(left), µ = 1000 GeV (right) for different flavors. Figure taken from [28].



Chapter 6

Hadron-Hadron scattering

It is one of the striking features in particle physics that Feynman diagrams calculated for
one process can be easily extended to other processes, where the incoming and final state
particles are exchanged. This we can apply to use our knowledge obtained in ep scattering
to the case of hadron hadron or pp or pp̄ scattering, as illustrated in Fig. 6.1

_
µ

+
µ

+
µ

−µ

+

e−
−

e

e’

q

q’

e
q

q

Figure 6.1: Schematic illustration of ep→ e′X , e+e− → µ+µ− and pp→ µ+µ−X diagrams

6.1 Drell-Yan production in pp

From the matrix element epq → e′pq′ in eq.(3.58) we obtain the matrix element for e+e− →
µ+µ−:

|M |2 (e+e− → µ+µ−) = 2(4πα)2 t̂
2 + û2

ŝ2
(6.1)

with

ŝ = 4E2
b

71
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t̂ = −2E2
b (1− cos θ)

û = −2E2
b (1 + cos θ)

with θ being the polar angle of the scattered µ with respect to the incoming e+ and Eb being
the energy of the incoming e+ in the center of mass frame of the e+e− pair.

The cross section is given by

dσ

dΩ
=

1

64π2ŝ
|M |2

=
1

64π2ŝ

(
2α2(4π)2

) 4E4
b (1− cos θ)2 + 4E4

b (1 + cos θ)2

16E4
b

=
α2

4ŝ

(
1 + cos2 θ

)
This gives then the total cross section:

σ(e+e− → µ+µ−) =

∫ 2π

0
dφ

∫ +1

−1
d cos θ

α2

4ŝ

(
1 + cos2 θ

)
=

4πα2

3ŝ

If we calculate the cross section for the crossed diagram qq̄ → e+e− we must take into
account the fractional charge of the quarks e2

q , giving:

σ(q + q̄ → µ+µ−) =
4πα2

3ŝ
e2
q

and since quarks are not free but confined in hadrons we obtain:

dσ

dM2
=

1

3

1

3
3
∑
q

∫
dx1dx2fq(x1)fq̄(x2)

dσ̂

dM2
(6.2)

with f(x1), f(x2) being the parton distribution functions and x1(x2) being the fractional
momenta of the protons carried by the partons and

dσ̂

dM2
=

4πα2

3ŝ
e2
qδ(ŝ−M2) (6.3)

with ŝ = x1x2s (neglecting masses of the incoming particles and partons), M being the mass
of the qq̄ system and s being the proton-proton center-of-mass energy. The factor 1

3 in eq.(6.2)
comes from averaging over the initial 3 color states of q and q̄ while the factor 3 comes from
the sum over the final state color singlet combinations. The process pp→ µ+µ−+X is called
Drell-Yan process (DY), after the authors who calculated first the cross section [44].

The rapidity y is related to the ratio of the momentum fractions x1
x2

as shown in the fol-
lowing. Consider the process pp→ µ+µ− +X with the momenta of incoming partons

p1 =

√
s

2
(x1, 0, 0, x1)

p2 =

√
s

2
(x2, 0, 0,−x2)
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Figure 6.2: Kinematic relation of y with the momentum fraction x and the mass M for two
different

√
s energies (taken from [45]).

then the rapidity y = 1
2 log E+pz

E−pz of the µ+µ− is equal to the rapidity of the p1p2 pair with

E = E1 + E2 =

√
s

2
(x1 + x2)

pz = pz1 + pz2 =

√
s

2
(x1 − x2)

The rapidity y of the incoming parton pair is then:

y =
1

2
log

E + pz
E − pz

=
1

2
log

x1

x2

Defining τ = M2

s = x1x2 we obtain:

x1 =
√
τ exp(y)

x2 =
√
τ exp(−y)

In Fig. 6.2 the relation between rapidity and the momentum fraction x is shown for different
M2.
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The lowest order Drell Yan cross section is then:
dσ

dM2
=

4πα2

9M2

∑
q

∫
dx1dx2fq(x1)fq̄(x2)e2

qδ(ŝ−M2) (6.4)

=
4πα2

9M2

1

s

∑
q

e2
q

∫
dx1dx2fq(x1)fq̄(x2)δ

(
x1x2 −

M2

s

)
(6.5)

=
4πα2

9M2

1

s

∑
q

e2
q

∫
dx1dx2fq(x1)fq̄(x2)

1

x1
δ

(
x2 −

τ

x1

)
(6.6)

=
4πα2

9M2

1

s

∑
q

e2
q

∫
dx1

x1
fq(x1)fq̄

(
x2 =

τ

x1

)
(6.7)(

dσ

dM2dy

)
Born

=
4πα2

9M2

1

s

∑
q

e2
qfq(x1)fq̄

(
x2 =

τ

x1

)
(6.8)

with dy = dx1
x1

, where the terminology Born means lowest order.

6.1.1 Factorization of production and decay in Drell Yan processes

Calculating O(αs) corrections to DY production involves 2 → 3 processes. However, we
can simplify the calculation if we apply the same methods as in DIS: we try to separate the
production process from the decay, as illustrated in Fig. 6.3. By doing so, we can reduce the

x=

Figure 6.3: Schematic diagram to separate the production from the decay in a Drell Yan
process.

problem to a simple calculation of a 2 → 2 process. The cross section is then written in a
factorized form:

dσ(q + q̄ → l+ + l−) = dσ(q + q̄ → γ∗) ⊗ 1

Q4
⊗ dσ(γ∗ → l+ + l−)

where the first term corresponds to the production, the second term is the photon propagator
and the third term describes the decay.

The matrix element for γ∗(q)→ l−(k1) + l+(k2) is given by [12][see exercise 10.2]:

M(γ∗ → l+l−) = eū(k1)γµν(k2)

|M(γ∗ → l+l−)|2 =
16πα

3
Q2
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with q2 = Q2 being the timelike mass of γ∗.
The matrix element for qq̄ → γ∗ is given by:

|M(qq̄ → γ∗)|2 =
4πα

3
M2e2

q

with M2 = Q2 being the mass of the qq̄ system (note: do not confuse this with the notation
for the matrix element).

We write the cross section for q+ q̄ → l+ + l− as (where the particles are treated massless):

dσ(q + q̄ → l+ + l−) =
1

M2
|M(qq̄ → l+l−)|2 d

4k1

(2π)3

d4k2

(2π)3
(2π)4δ4(p1 + p2 − k1 − k2) (6.9)

=
1

M2
|M(qq̄ → γ∗)|2d4qδ4(p1 + p2 − q)

1

Q4
|M(γ∗ → l+l−)|2

× d4k1

(2π)3

d4k2

(2π)3
(2π)4δ4(q − k1 − k2)

=
1

2M2
|M(qq̄ → γ∗)|2d4qδ4(p1 + p2 − q)

1

Q4
|M(γ∗ → l+l−)|2 dΩ

32π2

=
1

2M2

4πα

3
M2e2

qd
4q δ4(p1 + p2 − q)

1

Q4

16πα

3
Q2 dΩ

32π2

=
1

2M2

4πα

3
M2e2

qd
4q δ4(p1 + p2 − q)2π

α

3πM2
(6.10)

dσ

dM2
=

4π2αe2
q

3
× α

3πM2
δ(Q2 −M2) (6.11)

=
4π2α2e2

q

9M2
δ(Q2 −M2) (6.12)

where we recovered in the last line again eq.(6.3).
Applying the factorization of production and decay one only needs to calculate the pro-

duction cross sections for:

pp → Z0 +X

pp → γ∗ +X

pp → W± +X

pp → H +X

where H stands for the Higgs boson, while applying the decay separately.

6.1.2 Factorization of transverse momenta in Drell Yan processes

A crucial assumption of Bjorken scaling is, that the amplitude of a process is suppressed,
when the virtuality of the partons become larger than a typical hadronic mass scale (see dis-
cussion in [14][p 304]). This assumption is equivalent to the requirement that the partons can



76 CHAPTER 6. HADRON-HADRON SCATTERING

 [GeV]
T

q
1 10 210

 ]
-1

 [(
G

eV
)

Tq
/dσ

 dσ
1/

-710

-610

-510

-410

-310

-210

-110

 combined)µdata (e + 

 + CT10POWHEG

CMS

 = 7 TeVs at  
-1

 L dt = 36 pb∫
0 GeV2>

T
.1, p2<|η|

 [GeV]
T

q
0 5 10 15 20 25 30

 ]
-1

 [G
eV

Tq
/dσ

 dσ
1/

0.01

0.02

0.03

0.04

0.05

0.06

Figure 6.4: The transverse momentum of the Z0 boson as measured by [46].

have only limited transverse momenta with respect to the direction of the beam hadron. We
can generalize the parton distribution function to take into account also transverse momenta
(see discussion on Transverse Momentum Dependent PDFs in section 5)

dξf(ξ) → d2~ktdξP (kt, ξ) with
∫
d2~ktP (~kt, ξ) = f(ξ)

where ~kt is a 2-dimensional vector.
For a hard scattering scale in an inclusive process (where we do not investigate observ-

ables sensitive to kt) one can set

P (~kt, ξ) = δ(~kt)f(ξ)

and neglect all transverse momenta (as was done in the discussion of the DGLAP PDFs). If
the transverse momentum of the partons is zero, then also the DY pair has zero transverse
momentum, which is in contrast to what is observed in measurements [46] (Fig. 6.4).

Assuming a distribution function P (~kt, ξ) with:

P (~kt, ξ) = h(~kt)f(ξ)

h(~kt) =
b

π
exp

(
−b~k2

t

)
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we obtain:

1

σ

dσ

dpt
=

∫
d2~kt1d

2~kt2δ
(2)(~kt1 + ~kt2 − ~pt)h(~kt1)h(~kt2) (6.13)

=

∫
d2~kt1h(~kt1)h(~pt − ~kt1) (6.14)

Applying the substitution1 ~k = 1
2~pt − ~kt1 we obtain (using d2~kt = dk2

t
dφ
2 ):

1

σ

dσ

dpt
=

b2

π2

∫
d2~kh(

1

2
~pt − ~k)h(~k +

1

2
~pt) (6.15)

=
b2

π2

∫
d2~k exp

(
− b

2
p2
t − 2bk2

)
(6.16)

=
b2

π
exp

(
− b

2
p2
t

)∫ ∞
0

dk2 exp
(
−2bk2

)
(6.17)

=
b

2π
exp

(
− b

2
p2
t

)
(6.18)

Another way to solve the integral is shown in Appendix 8.2
At low pt the measurements are well described by this expression, however a tail to-

wards high pt is observed (see Fig. 6.4), which cannot be described by the (limited) intrinsic
transverse momentum of partons inside the hadrons.

6.1.3 O(αs) contributions to Drell Yan production

From the early measurements of the transverse momentum spectrum of Drell Yan production
(for a measurement from LHC see Fig. 6.4) it became clear, that the naive parton model is
incomplete: the tail of large pt could not be described assuming that the intrinsic kt of the
partons inside the hadrons is small. Already by comparing the measured cross section of
Drell Yan production with the prediction based on the parton model, the so called K-factor
defined as

K =
σmeasured

σcalculated(LO)

was found to be large, of the order of 2 – 3, indicating that important contributions to the
cross section were not included in the lowest order (LO) calculation.

TheO(αs) contributions to Drell Yan production can be calculated using the same matrix
elements, which have been used for the O(αs) corrections to DIS (see section 3.5). The LO
and O(αs) diagrams are shown in Fig. 6.5, which are similar to the diagrams from DIS but
with exchanged initial and final particles.

1Thanks to Radek Zlebcik for pointing out this elegant solution
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Figure 6.5: Diagrams contributing to Drell Yan production up to O(αs).

The matrix element for qq̄ → γ∗g is given by:

|M |2 = 16π2αsα
8

9

[
û

t̂
+
t̂

û
+

2(M2ŝ)

ût̂

]
(6.19)

= 16π2αsα
8

9

[(
1 + z2

1− z

)(
−ŝ
t̂

+
−ŝ
û

)
− 2

]
(6.20)

= 16π2αsα
2

3

[
Pqq(z)

(
−ŝ
t̂

+
−ŝ
û

)
− 2

]
(6.21)

where we have used z = M2

ŝ and û + t̂ = M2 − ŝ = −ŝ(1− z). We have also introduced the
splitting function (known from DIS):

Pqq =
4

3

1 + z2

1− z

Similarly, we obtain for qg → γ∗q:

|M |2 = 16π2αsα
1

3

[
− t̂
ŝ
− ŝ

t̂
− 2(M2û)

ŝt̂

]
(6.22)

= 16π2αsα
1

3

[(
z2 + (1− z)2

)
× · · ·

)
(6.23)

= 16π2αsα
2

3
[Pqg(z)× · · ·) (6.24)

with the splitting function

Pqg(z) =
1

2
(z2 + (1− z)2)

We can now calculate the cross section for Drell Yan production up to O(αs) using the
relation for pt as given in eq.(8.6) in section 8.1.2 with the Jacobean

dp2
t = dt̂

u− t
s

= (1− z)dt̂.

In order to simplify the calculation we consider again only the leading contribution at small
transverse momenta (taking the small t̂ approximation, as done in the DIS case). We see, that
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we obtain a similar behavior of the cross section:

dσ

dp2
t

=
1

1− z
dσ

dt̂

∝ 1

16π2ŝ

1

1− z
Pqq(z)ŝ

(
−1

t
+ · · ·

)
∝ 1

ŝ
Pqq(z)

1

p2
t

We observe the same behavior as in DIS. The cross section in divergent if we perform the
integral over pt from zero, and we have to apply the same renormalization procedure as in
the DIS case. We also observe, that the renormalization is the same as in DIS, as we obtained
the same splitting functions. This is one of the important results of the QCD improved parton
model: the parton densities, including the renormalization of the bare parton densities, are
the same in DIS lepton proton scattering as in pp or pp̄ scattering: this is a consequence of
factorization.

6.1.4 The pt spectrum of Drell Yan production

The complete calculation of the transverse momentum spectrum of Drell Yan production
becomes complicated, because of the integration over the longitudinal and transverse com-
ponents of the interaction partons. The original papers on this are very interesting [47, 48].
Here we only consider the small pt approximation and give the final result (without attempt-
ing to perform the calculation in detail, the full derivation can be found in [13]):

dσ

dM2dydp2
t

=
8

27

α2αs

sM2

1

p2
T

∫ 1

xmina

dxaH(xa, xb,M
2)

xa xb
xa − x1

(
1 +

τ2

(xaxb)2
−

x2
T

2xaxb

)
(6.25)

∼ 8

27

α2αs

sM2

2

p2
T

H(xa, xb,M
2) log

s

p2
t

(6.26)

=

(
dσ

dM2dy

)
Born

×
(

4αs
3π

1

p2
t

log
s

p2
t

)
(6.27)

with the product of the parton densities defined by:

H(xa, xb, Q
2) =

∑
e2
q

(
qi(xa, Q

2)q̄i(xb, Q
2) + q̄i(xa, Q

2)qi(xb, Q
2)
)

and the lowest order (O(α0
s ) Born cross section given in eq.(6.8):(

dσ

dM2dy

)
Born

=
4πα2

9sM2
Hq(xa, xb,M

2) (6.28)
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As we know already from the discussion of DIS, the divergent behavior is absorbed by
virtual corrections, for example vertex corrections. As in the DIS case, we can calculate the
virtual corrections explicitly, or argue on the basis of unitarity (and knowing that the final
state configuration of a virtual correction is the same as the lower order process).

Heuristic approach to describe the small pt region

We use here a heuristic argument to obtain the behavior of the cross section at small pt, by
assuming that the virtual and the non-branching corrections will compensate the divergent
behavior of the real emission cross section. We write:∫ s

0

dσ

dM2dydp2
t

dp2
t =

(
dσ

dM2dy

)
Born

+O(αs) (6.29)

We rearrange the integral:∫ s

0

dσ

dM2dydp2
t

dp2
t =

∫ p2t

0

dσ

dM2dydp′2t
dp′2t +

∫ s

p2t

dσ

dM2dydp′2t
dp′2t (6.30)

giving: ∫ p2t

0

dσ

dM2dydp′2t
dp′2t =

∫ s

0

dσ

dM2dydp′2t
dp′2t −

∫ s

p2t

dσ

dM2dydp′2t
dp′2t (6.31)

Assuming that the total cross section is the Born cross section multiplied with a k- factor k
(which we will neglect) we can write:∫ p2t

0

dσ

dM2dydp′2t
dp′2t =

(
dσ

dM2dy

)
Born

(1 + k)−
∫ s

p2t

dσ

dM2dydp′2t
dp′2t (6.32)

=

(
dσ

dM2dy

)
Born

(
1− 4αs

3π

∫ s

p2t

log s
p′2t

p′2t
dp′2t

)
(6.33)

=

(
dσ

dM2dy

)
Born

(
1− 2αs

3π

(
log

s

p2
t

)2
)

(6.34)

This form suggests for an extension to higher orders in αs, and we assume that the corrections
in the bracket will exponentiate:

1 + a+
a2

2!
+
a3

3!
+ · · · = exp a

and we write for the cross section:

 
∫ p2t

0

dσ

dM2dydp′2t
dp′2t =

(
dσ

dM2dy

)
Born

exp

(
−2αs

3π
log2 s

p2
t

)
(6.35)
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We have obtained an integrated cross section which with the assumption that the αs

corrections exponentiate, is finite over the whole range in pt. To obtain the the differential
cross section as a function of p2

t , we differentiate eq.(6.35) with respect to p2
t and obtain:

dσ

dM2dydp2
t

=

(
dσ

dM2dy

)
Born

4αs

3π

1

p2
t

log
s

p2
t

exp

(
−2αs

3π
log2 s

p2
t

)
(6.36)

We see, that the cross section for pt → 0 vanishes. This is the effect of the all order resumma-
tion of soft gluon emissions. A similar effect we have already observed in the discussion of
the Sudakov form factor in section 4.3.2, where we found that the probability for no branch-
ing from one scale to another is very small: only if there is no resolvable branching, the
pt of the Drell Yan pair is zero (except if the emitted partons all compensate each other in
transverse momentum).

A formal approach to small pt

A more detailed discussion and calculation of the Drell Yan pt spectrum can be found in [49],
here we just sketch the basic idea. We start from a general equation for multiparton emissions
qq̄ → γ∗ +N (where N gives the number of emitted gluons):

1

σ

dσ(N)

dp2
t

∼
N∏
i=1

[∫
d2ktidxiM

(N)

]
δ
(∑

~kti + ~pt

)
(6.37)

whereM (N) is the matrix element for the emission ofN gluons. In the limit of small emission
angles we can write:

M (N) ∼
N∏
i=1

αs

k2
ti

(6.38)

and obtain:
1

σ

dσ(N)

dp2
t

∼
N∏
i=1

[∫
d2kti
k2
ti

log
s

k2
ti

]
δ
(∑

~kti + ~pt

)
(6.39)

In the limit of strong ordering of the transverse momenta of the emitted gluons k2
t1 �

k2
t2 � k2

t3 � · · · � s, with s being the center-of-mass energy, the delta-function acts only on
the last emitted gluon (the one with the largest kt):

1

σ

dσ(N)

dp2
t

∼
N∏
i=1

[∫
d2kti
k2
ti

log
s

k2
ti

]
δ
(
~kt last + ~pt

)
∼ 1

p2
t

log
s

p2
t

∫
d2kt,N−1

k2
t,N−1

log
s

k2
t,N−1

∫
d2kt,N−2

k2
t,N−2

log
s

k2
t,N−2

· · · (6.40)

Using ∫
dk2

t

k2
t

logN
s

k2
t

=

(
log s

k2t

)N+1

N + 1
(6.41)
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we can integrate the equation term by term:

dσ(1)

dp2
t

' 1

p2
t

log
s

p2
t

= A

dσ(2)

dp2
t

' A

∫
d2kt
k2
t

log
s

k2
t

= A
1

2
log2 s

k2
t

dσ(3)

dp2
t

'
∫
d2kt
k2
t

log
s

k2
t

dσ(2)

dp2
t

= A
1

2

∫
d2kt
k2
t

log3 s

k2
t

= A
1

2

(
1

2
log2 s

k2
t

)2

dσ(4)

dp2
t

'
∫
d2kt
k2
t

log
s

k2
t

dσ(3)

dp2
t

= A
1

2

1

4

∫
d2kt
k2
t

log5 s

k2
t

= A
1

2

1

3

(
1

2
log2 s

k2
t

)3

dσ(N)

dp2
t

' A
1

(N − 1)!

(
1

2
log2 s

k2
t

)N−1

We obtain for the cross section including the emission of N gluons:

dσ

dp2
t

=
∑
i

dσ(i)

dp2
t

' A
∑
i

1

(i− 1)!

(
1

2
log2 s

p2
t

)i−1

' A exp

[
1

2
log2 s

p2
t

]
Summing up everything, we finally obtain again eq.(6.36):

dσ

dM2dydp2
t

=

(
dσ

dM2dy

)
Born

4αs

3π

1

p2
t

log
s

p2
t

exp

(
−2αs

3π
log2 s

p2
t

)
(6.42)

The essential ingredients to obtain this formula were the use of eq.(6.41) and the strong
ordering of the transverse momenta. Only under these conditions the delta function applies
only to the hardest (last) emission and the product of integrals can be written as nested
integrals, meaning that soft and collinear gluons are treated independently.

In order to obtain a full expression for the pt spectrum, the strong ordering condition has
to be relaxed, meaning that energy-momentum conservation has to be included for every
single emission, which will result in additional contributions. Such calculations are very
difficult (if not even impossible) to be performed in momentum space, and usually a Fourier
transform to impact parameter space is performed. A full description is given in the original
CSS (Collins-Soper-Sterman) paper [50] and in [51]:

dσ

dM2dydp2
t

=
∑
q

σqq0

d

dp2
t

([q(xa, pt)q(xb, pt) + a↔ b]

× exp

(
−
∫ M2

p2t

dµ2

µ2

[
A log

(
M2/µ2

)
+B

]))
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Relation to PB TMD distributions

The exponential appearing in eq.(6.42) can be interpreted as a Sudakov form factor, describ-
ing the probability for no emission. In the discussion on parton density functions an in
particular in the discussion of TMD distributions, Sudakov form factors appeared.

The Sudakov form factor for gluon emission from a quark is given as:

∆s(zM , µ0, µ) = exp

(
−αs

2π

[∫ µ2

µ20

dµ′2

µ′2

∫ zM

0
dzP (z) +

3

2

])

∼ exp

−αs
2π

∫ µ2

µ20

dµ′2

µ′2

∫ 1−µ
′
µ

0
dz

[
2

1− z

]
+

3

2


= exp

(
−αs

2π

[∫ µ2

µ20

dµ′2

µ′2
2 log

µ2

µ′2
+

3

2

])
(6.43)

where the Pqq splitting function, including the virtual correction, from eq.(4.24) approximat-
ing z → 1 has been used (see also [52, 53]).

We observe that the form of the Sudakov form factor obtained with the PB method is
the same as the one obtained with from CSS [51] in eq.(6.43) provided the angular ordering
conditions are used.

6.1.5 Measurement of the W mass

The W boson can be detected via the decay products in a leptonic decay:

W → l + ν

where the ν escapes detection.
In the rest frame of the W -boson the cross section for the leptonic decay is [14][p 320]:

1

σ

dσ(W → νl)

d cos θ∗
=

3

8
(1 + cos2 θ∗) (6.44)

with the angular dependence similar to that of the process e+e− → µ+µ−:

dσ

d cos θ
∼ 1

s
(1 + cos2 θ)

where the difference in the pre-factors comes from the flux factor. In the W rest frame the
transverse momentum of the lepton l and that of the neutrino are balanced. Changing the
variables in eq.(6.44) from d cos θ to dp2

t using p2
t = t̂û

ŝ = 1
4 ŝ sin2 θ (see appendix 8.1.2) we

obtain:

d cos θ

dp2
t

=
1

2

(
1− 4p2

t

ŝ

)− 1
2 4

ŝ

=
2

ŝ

(
1− 4p2

t

ŝ

)− 1
2

=
2

ŝ cos θ
(6.45)
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Figure 6.6: The transverse mass of the W boson as measured by [54].

With eq(6.45) we obtain for the cross section:

dσ

dp2
t

=
dσ

d cos θ

d cos θ

dp2
t

(6.46)

' 1 + cos2 θ

cos θ
(6.47)

'
2
(

1− 2p2t
ŝ

)
√

1− 4p2t
ŝ

(6.48)

showing the Jacobean peak for p2
t = ŝ

4 =
M2
W
4 , which corresponds to cos θ = 0 or θ = π/2.

Thus the cross section 1
σ
dσ
dp2t

is strongly sensitive to MW and can be used to measure the W
mass.
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The transverse mass M⊥ is defined as:

M2
⊥ = (|~pe⊥|+ |~pν⊥|)

2 − (~pe⊥ + ~pν⊥)2

M2 = (|~pe|+ |~pν |)2 − (~pe + ~pν)2

Obviously, in the limit of vanishing longitudinal momentum M⊥ → M . The transverse
mass M⊥ can be calculated as:

M2
⊥ = (|~pe⊥|+ |~pν⊥|)

2 − (~pe⊥ + ~pν⊥)2

= 2|pe⊥||pν⊥|(1− cos ∆φ)

with pν⊥ being the neutrino transverse momentum (or identified as the missing transverse
momentum as calculated from energy momentum conservation) and ∆φ being the angle
between the observed electron and the missing transverse momentum vector.

The transverse mass has been obtained in early measurements at the LHC [54]. The
measurement is shown in fig. 6.6.
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Chapter 7

High Parton Densities and small x
effects

We have seen in the discussion of DIS and the parton densities that all evolution equations,
DGLAP, BFKL and CCFM, predict a strong rise of the parton densities at high energies be-
cause of the dominance of the g → gg splitting. However, the rise of the parton densities
and the influence on observables of the hadronic final state will depend on the details of the
parton evolution.

In this chapter we will discuss the high energy behavior of the γ∗p cross section, effects of
small x evolution on the differential cross section of Drell Yan production at the high energies
available at LHC, as well as effects on the final state coming from high parton densities which
will result in contributions of multiple parton interaction (MPI).

7.1 The high energy behavior of the γ∗p cross section
In Fig. 4.1 we have seen that the structure function F2(x,Q2) rises with decreasing x. The
structure function F2 is connected directly with σγ∗p. The cross section for γ∗p as a function
of W 2 = Q2 1−x

x is shown in Fig. 7.1 (taken from [55]). The cross section increases wit W 2,
for small Q2 the increase is weak, whereas for large Q2 the increase is strong. At large values
of W 2 the partial cross section for large Q2 eventually becomes larger than the total γp cross
section, violating unitarity. At large W the rise of the cross section therefore has to become
weaker, leading so so-called saturation effects: the parton density cannot increase forever,
but saturates. The basic mechanism of saturation is gluon fusion g + g → g. Where exactly
this happens is unclear, it also depends on the spatial distribution of the partons inside the
proton.
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Figure 7.1: γ∗p cross section as a function of the Wγ∗p center of mass energy for different
values of Q2 [55] .

7.2 The pt spectrum of Drell Yan production at high energies
At high energies, when the transverse momenta can be of similar size as the longitudinal
momenta of the interacting partons, the collinear approximation leading to the DGLAP evo-
lution equation might be insufficient and the BFKL or CCFM evolution might be a better
representation of parton evolution. Effects beyond DGLAP have been observed at HERA in
energy flow measurements [56], pt spectra of charged particles [57] and the cross sections
for forward jet production [58–60]. These measurements have been used in [61] to predict
a significant broadening of the transverse momentum spectrum of Drell Yan pairs at LHC
energies.

First measurements of forward Drell Yan production at LHCb [62] show a significant
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deviation of the measurement from the theoretical prediction as shown in Fig. 7.2

Figure 7.2: Cross section as a function of the transverse momentum pt of the Z boson as
measured by [62].

7.2.1 Multiparton interactions

When the parton densities are high, the probability to have more than one partonic interac-
tion per hadron hadron collision increases [63–67]. For simplicity we illustrate the problem
with (mini)-jet production at highest energies. The partonic cross section for (mini) - jet pro-
duction diverges for ptmin → 0:

σhard =

∫
p2tmin

dσhard(p
2
t )

dp2
t

dp2
t (7.1)

The partonic cross section as a function of ptmin is shown in Fig. 7.3 (taken from [65]. One can
see, that the cross section exceeds the inelastic (non-diffractive) cross section σnd at values of
ptmin, which are above a typical hadronic scale, at LHC for ptmin ∼ 5 GeV. The solution
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Figure 7.3: Mini jet cross section as a function of ptmin for Tevatron and LHC energies (from
[65]).

out of this dilemma is to assume that there could be more than one partonic interaction per
hadron - hadron collision, with the average number of interactions given by:

〈n〉 =
σhard(ptmin)

σnd
(7.2)

Here, σnd is the non-diffractive inelastic pp cross section. However, this does not solve
the problem of the divergency for pt → 0. To treat this we remember that the hadrons
are color neutral and when pt becomes small, the wavelength increases such that a gluon
cannot resolve anymore any individual color charges (see discussion on angular ordering
section 5.2.1), resulting in a reduction of the effective strong coupling.

Let us define (following the discussion in [64]):

p(xt) =
1

σnd

dσ

dxt
(7.3)

with xt = 2pt√
s

. To understand this argumentation, let us go back to the derivation of a Poisson
distribution. If λ is the average rate for occurrence of specific events, then the probability that
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a single event happens at δt is:
λδt

The probability that nothing happens is 1 − λδt. The probability that no event happens in
[t, t+ δt] under the condition that there was no event in [0, t] with P0(t) is:

P0(t+ δt) = P0(t)(1− λδt)

 
P0(t+ δt)− P0(t)

δt
= −λP0(t)

 
∂P0(t)

∂t
= −λP0(t)

 P0(t) = exp (−λt)

which is the Poisson distribution for the observation of r = 0 events with a mean of the
distribution of µ = λt.

To obtain the probability for the hardest scattering at xt1:

P1 = p(xt1) exp

(
−
∫ 1

xt1

p(x′)dx′
)

(7.4)

The naive probability p(xt1) is multiplied by Sudakov type form factor to ensure, that there
is no other scattering with xt > xt1 in the event. Now we can calculate the probability to
have the second hardest scattering at xt2:

P2 =

∫ 1

xt2

dxt1 p(xt1) exp

(
−
∫ 1

xt1

p(x′)dx′
)

exp

(
−
∫ xt1

xt2

p(x′)dx′
)
p(xt2) (7.5)

=

∫ 1

xt1

dxt1 p(xt1)p(xt2) exp

(
−
∫ 1

xt2

p(x′)dx′
)

(7.6)

This equation can be understood as follows: there is no scattering between xt1 and 1, we
have a scattering at xt1 and there is no scattering between xt2 and xt1. Finally we integrate
over all possible values of xt1. A similar argumentation was made for the parton evolution
in terms of Sudakov form factors in section 4.3.2. The expression can be iterated to give:

Pn = p(xt)
1

(n− 1)!

[∫ 1

xt

p(x′)dx′
]n−1

exp

(
−
∫ 1

xt

p(x′)dx′
)

(7.7)

which is a Poisson distribution with

µ =

∫ 1

xt

p(x′)dx′ =
1

σnd

∫
p2tmin

dσhard(p
2
t )

dp2
t

dp2
t

pr =
µr

r!
exp (−µ)
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Summing up all pr gives:∑
r

pr =
∑
r

µr

r!
exp (−µ) = exp (µ) exp (−µ) = 1

which says, in the case of jet production, that the total rate of mini-jet production is not
changed, the probability that a scattering occurs is 1, which is that the inclusive cross section
is not changed by introducing the concept of multi-parton interactions.

The concept of multi-parton interaction has been successfully applied to describe event
properties in soft collisions but also to describe details of the hadronic final state in pertur-
bative processes.



Chapter 8

Appendix

8.1 Kinematics
In a 2 → 2 process we can relate the Mandelstam variable t̂ to the transverse momentum of
the t̂-propagator.

(a)

2

k
1

k
2

q
1

γ

q
2

q
1

k
2

k
1

*
γ

(b)

q

Figure 8.1: Schematic drawing of γ∗ + g → qq̄ (a) and g + g → qq̄ (b) scattering..

8.1.1 ep - case

In the center of mass frame of the parton process γ∗(k1)q(q1) → q(q2)g(k2) the four-vectors
of the incoming and outgoing particles are (see Fig. 8.1(a)) :

k1 = (

√
~k2 −Q2, 0, 0, k)

q1 = (k, 0, 0,−k)

q2 = (q,−q sin θ, 0,−q cos θ)
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k2 = (q, q sin θ, 0, q cos θ)

with k2
1 = −Q2. From this we obtain

ŝ = (k2 + q2)2 = 4q2

t̂ = (k1 − q2)2 = (q1 − k2)2 = −2(kq + kq cos θ) = −2kq(1 + cos θ)

û = (q1 − q2)2 = −2(kq − kq cos θ) = −2kq(1− cos θ)

ŝt̂û = 4q24(qk)2(1 + cos θ)(1− cos θ) = (4kq)2q2 sin2 θ

t̂+ û = −ŝ−Q2 = −2kq(1 + cos θ)− 2kq(1− cos θ) = −4kq

With this we obtain:

p2
t = q2 sin2 θ (8.1)

=
t̂ûŝ

(ŝ+Q2)2
(8.2)

In the small t limit we obtain from t̂ + û + ŝ = −Q2  û = −Q2 − ŝ. Using z = Q2

2k1.q1
and

ŝ = −Q2 +Q2/z we obtain:

p2
t = − t̂ŝ

ŝ+Q2
(8.3)

= −t̂(1− z) (8.4)

8.1.2 pp - case

Here we calculate the relation between the tansverse momentum pt of a final state parton in
a 2→ 2 process, like q(q1)q̄(q2)→ γ∗(k1)g(k2) with the four-vectors indicated in the brackets.
The four-vectors are given by (see Fig. 8.1(b)):

q1 = (q, 0, 0, q)

q2 = (q, 0, 0,−q)

k1 = (

√
M2 + ~k2,−k sin θ, 0,−k cos θ)

k2 = (k, k sin θ, 0, k cos θ)

with k2
1 = M2. From this we obtain

ŝ = (q1 + q2)2 = 4k1k2 = 4q2

t̂ = (q1 − k1)2 = (q2 − k2)2 = −2(qk + qk cos θ) = −2qk(1 + cos θ)

û = (q1 − k2)2 = −2(qk − qk cos θ) = −2qk(1− cos θ)

t̂û = 4(qk)2(1− cos θ)(1 + cos θ) = 4(qk)2 sin2 θ
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With this we obtain:

p2
t = k2 sin2 θ (8.5)

=
t̂û

ŝ
(8.6)

Please note that this is different compare to the DIS case (eq.(8.2), where we obtained:

p2
t =

t̂ûŝ

(ŝ+Q2)2

However, performing the small t limit and using ŝ+ t̂+ û = M2 together with z = M2/ŝ we
obtain:

p2
t =

t̂û

ŝ
(8.7)

 p2
t =

t̂(ŝ−M2)

ŝ
(8.8)

= −t̂(1− z) (8.9)

which agrees with what is obtained in the DIS case.

8.2 Calculation of transverse momentum of Drell Yan pair
Starting from eq.(6.14) we obtain:

1

σ

dσ

dpt
=

∫
d2~kt1d

2~kt2δ
(2)(~kt1 + ~kt2 − ~pt)h(~kt1)h(~kt2) (8.10)

=

∫
d2~kt1h(~kt1)h(~pt − ~kt1) (8.11)

=
1

2

∫ ∞
0

dk2
t1

∫
dφ

b2

π2
exp

(
−2bk2

t1

)
exp

(
−bp2

t

)
exp (2bptkt1 cosφ) (8.12)

=
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t1 exp
(
−2bk2

t1

)
2πI0(2bptkt1) (8.13)

=
b

2π
exp

(
−1

2
bp2
t

)
(8.14)

where we have used the expression for the modified Bessel function:∫ 2π

0
dφ exp (z cosφ) = 2πI0(z)

with:

I0(z) =
∑
n

(
1
4z

2
)n

(n!)2
(8.15)
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and have integrated this expression term by term1. Using eq.(8.13):

1

σ

dσ

dpt
=

∫
d2~kt1d

2~kt2δ
(2)(~kt1 + ~kt2 − ~pt)h(~kt1)h(~kt2)

=
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t1 exp
(
−2bk2

t1

)
2πI0(2bptkt1)

together with eq.(8.15):

I0(z) =
∑
n

(
1
4z

2
)n

(n!)2

gives:

1

σ

dσ

dpt
=

b2

2π2
exp

(
−bp2

t

) ∫
dk2

t1 exp
(
−2bk2

t1

)
2π

n=∞∑
n=0

(
1
4(2bptkt1)2

)n
(n!)2

and we can perform the integration term by term giving:

S =
1

σ

dσ

dpt

=
n=∞∑
n=0

Sn

with:

S0 =
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t12π exp
(
−2bk2

t1

)
=

b2

π
exp

(
−bp2

t

) 1

2b

=
b

2π
exp

(
−bp2

t

)
S1 =

b2

2π2
exp

(
−bp2

t

) ∫
dk2

t12π exp
(
−2bk2

t1

) 1

4
(2bptkt1)2

=
b2

π
exp

(
−bp2

t

) 1

4
4b2p2

t

∫
dk2

t1π exp
(
−2bk2

t1

)
k2
t1

=
b

2π
exp

(
−bp2

t

) b
2
p2
t

S2 =
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t12π exp
(
−2bk2

t1

) 1
4

(
4b2k2

t1p
2
t

)2
4

=
b2

2π
exp

(
−bp2

t

) 1

2
b4p4

t

∫
dk2

t1π exp
(
−2bk2

t1

)
k4
t1

1Courtesy of K. Kutak, who showed how to perform the integral



8.2. CALCULATION OF TRANSVERSE MOMENTUM OF DRELL YAN PAIR 97

=
b

2π
exp

(
−bp2

t

) b2
8
p4
t

...

Summing up all terms gives:

S = S0 + S1 + S2 + · · ·

=
b

2π
exp

(
−bp2

t

)(
1 +

b

2
p2
t +

1

8
b2p4

t + · · ·
)

=
b

2π
exp

(
−bp2

t

)(
1 +

1

1!

bp2
t

2
+

1

2!

(
bp2
t

2

)2

+ · · ·

)

=
b

2π
exp

(
−1

2
bp2
t

)
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