GBP MC WG

Standalone MC for LUXE GBP

Contents

- Review of the priority tasks
- Work plan & deadlines
- Tools & manpower

Priorities – in short

- 1. What is the **detector accuracy** in measuring \xi, intensity?
 - What is the impact of detector geometry (thickness) and strip layout (strip width & spacing) on detector accuracy?
 - What is the performance of the II station and the I+II stations combined?
- 2. How long can a detector work on the LUXE gamma beam? (**radiation damage**)
 - Assumed that we can perform three independent measurements of the radiation damage with:
 - electron gun and X-ray source to measure the IEL induced damage
 - high energy electron beam at Elbe to measure IEL and NIEL effects
 - neutrons produced at the TIGRA nuclear reactor (<u>link</u>) to assess purely NIEL related damage
 - Necessary steps:
 - check that NIEL is reproduced with sufficient reliability
 - data on beam configurations (generation of e-laser, gamma-laser events at LUXE)
 - check impact of threshold values and systematic effects of algorithm based on highest localized dose
- 3. What are the best operating conditions to apply to the GBP? (GBP setup)
- 4. What is the size of the beam in LUXE gamma-laser mode? (γ -laser)

Priorities divided by Tools

Work strategy

Work strategy – Detector accuracy

Work strategy – Radiation damage

A first approach with the 2D gaussian beam Detector accuracy and radiation damage

A first approach with 2D gaussian beam

simulation shows that most of the profile is contained in a $2 \times 2 \text{ cm}^2$ square, although there are long tails. In the case of the beam profiler placed just out of the vacuum pipe, at about 6 m from the interaction point, the central high-energy component of the gamma beam can be approximated with a Gaussian having standard deviations $\sigma_x = \max(1, \xi) \times 180 \ \mu\text{m}$ for $\xi > 1$, $\sigma_y = 180 \ \mu\text{m}$ (see also Sec. 2.9.5). For instance, for $\xi = 5$, $\sigma_x = 900 \ \mu\text{m}$ while for $\xi < 1$ the spot size remains $\sigma_x = 180 \ \mu\text{m}$.

• A first approach, from a MC sim. with 2D gaussian beam, gave us some insights about detector performances and radiation damage.

Detector	Total E _{dep} [GeV]	E _{dep} @strip100 [GeV]	Dose @strip100 [Gy]	Charge @strip100 [pC]	Total average dose [Gy]	Peak energy [GeV]	Peak dose [Gy]
Upstream	85.63	8.89	0.358	507.44	0.013	1.088	0.044
Downstream	213.3	23.25	0.937	1264.15	0.032	2.648	0.107

Standalone MC - Geant4 approach

Geant4 approach

Description

- The simulation is based on Geant4 C++ framework. Configuration is done both by writing code and by using a meta language (macros) which call pre-coded functions.
- Detector geometry is hard coded. At the present time, it includes the GBP latest design (w. strip spacing & metallization) but it does not include pcb supports and additional geometry (which may contribute to the background)
- Physics is both hard coded and customizable with macro commands. The physics list used is emstandard_opt4 which includes: <u>link</u>
- Source code on GitHub

Recorded data

- For each particle, it is recorded: its position & momentum; the energy deposition; the step length and the physical process responsible for the e.dep.
- File format: ROOT.
- The analysis macros then give us total energy deposited, strip events (with energy), dose, hit, etc.

Geant4 approach

Latest feature

- Arbitrary uncorrelated primaries x/p distributions (using a ROOT input file)

• Next in the schedule (for geant4MC)

- Arbitrary correlated primaries x/p distributions (neglecting px,py)
- Clone the sim. for Legnaro, ELBE, Tigra experimental setups