The formalism of Fused Webs for multi-parton scattering amplitudes

Anurag Tripathi (IIT Hyderabad)

Resummation, Evolution, Factorization 2022 (Online) 31 Oct - 04 Nov 2022

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Plan of the talk

- •Webs in multi-parton amplitudes
- Properties of web mixing matrices
- •Fused Cwebs formalism
- •Summary

Agarwal, Pal, Srivastav, AT; JHEP 06 (2022) 020

Agarwal, Magnea, Pal, AT; JHEP 03 (2021) 188

Agarwal, Danish, Magnea, Pal, AT; JHEP 05 (2020) 128 Time

Multi-parton Scattering Amplitude In IR limit

IR behaviour

 $\mathcal{S}_n \Big(eta_i \cdot eta_j, lpha_s(\mu^2) \Big)$

Soft anomalous dimension

Soft matrix

 $\mathcal{S}_n\Big(eta_i\cdoteta_j,lpha_s(\mu^2),$

 \leftrightarrow Wilson line correlator

$$\left(\epsilon,\epsilon\right) \equiv \left\langle 0 \right| \prod_{k=1}^{n} \Phi_{\beta_{k}}\left(\infty,0\right) \left|0
ight
angle$$

 $\left(\epsilon\right) = \mathcal{P} \exp\left[-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d\lambda^{2}}{\lambda^{2}} \mathbf{\Gamma}_{n}\left(\beta_{i}\cdot\beta_{j},\alpha_{s}(\lambda^{2}),\epsilon\right)\right]$

Diagrammatic Exponentiation (A complementary approach)

Kinematic factor K(D)Color factor C(D)

 $S_n(\gamma_i) = \sum K(D) C(D)$

 $S_n(\gamma_i) = \exp\left|\mathscr{M}_n(\gamma_i)\right|$

Modified colour factors $\widetilde{C}(D)$ $\mathscr{W}(\gamma_i) = \sum K(D) \widetilde{C}(D)$

For Eikonal Form factors these are called webs

Mitov, Sterman, Sung; 2010 Gardi, Laenen, Stavenga, White; 2010 Gardi, Smillie, White; 2011 Gardi, White; 2011 Dukes, Gardi, Steingrimsson, White; 2013 Gardi, Smillie, White; 2013 Dukes, Gardi, McAslan, Scott, White; 2016

See also: Vladimirov, 2014-2017 for **Alternative approach**

Gatheral; Frenkel, Taylor; Sterman

Multi-parton Webs

Web (w): A set of diagrams closed under permutations of the gluon attachments on the Wilson lines.

The exponent $W(\gamma_i)$ grouped into webs

 $R_w(D,D')$ Web mixing matrix (Gardi, Smillie, White, et al, 2010-2013)

 $S_n = \exp\left(\sum w\right)$ $S_n = \exp\left(\sum_{D,D'\in w} K(D) R_w(D,D') C(D)\right)$

Properties of web mixing matrices

Projector

 $R_w^2 = R_w$

Row sum rule

 $\sum_{D'} R_w(D,D') = 0$

Column sum rule (Conjecture)

 $\sum s(D) R_w(D, D') = 0$ D

Connection with Mathematical structures (Posets) (Dukes, Gardi, McAslan, Scott, White)

(Gardi, Smillie, White, et al 2010-2013)

(Gardi, Smillie, White, 2013)

Exponentiated colour factor

Is there a pattern?

$$R = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad R = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{1}{6} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$R = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \qquad R = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & -\frac{1}{6} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & -\frac{1}{6} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & -\frac{1}{2} & -\frac{1}{3} & 1 & \frac{1}{6} & -\frac{1}{2} \\ \frac{1}{6} & 0 & -\frac{1}{3} & 0 & \frac{1}{6} & 0 \\ \frac{2}{3} & -\frac{1}{2} & -\frac{1}{3} & 0 & -\frac{1}{3} & \frac{1}{2} \end{pmatrix}$$

Cweb mixing matrices at 4 loops are reported in

Agarwal, Magnea, Pal, AT; **JHEP 03 (2021) 188**

Agarwal, Danish, Magnea, Pal, AT; **JHEP 05 (2020) 128**

Drawing the diagrams slightly differently (Apologies for inconvenience!)

The tails of the Wilson lines are not visually meeting at the origin.

This makes drawing the diagrams easy.

Classification of diagrams

Irreducible

Partially Entangled

Completely Entangled

s(d)=0

Reducible

 $s(d) \neq 0$

Classification of diagrams

Irreducible

Partially Entangled Completely Entangled

s(d) = 0

Reducible

 $s(d) \neq 0$

Webs containing only reducible diagrams $(S(d_i) = 0, \quad \forall i)$

Uniqueness Theorem:

For a given column weight vector

 $S = \{s(d_1), ..., s(d_n)\}$

 $s(d_i) \neq 0, \forall i$

the mixing matrix is unique.

Agarwal, Pal, Srivastav, AT; **JHEP 06 (2022) 020**

Webs containing only reducible diagrams $(S(d_i) \neq 0, \forall i)$

Uniqueness Theorem:

For a given column weight vector

 $S = \{s(d_1), \dots, s(d_n)\}$

 $s(d_i) \neq 0, \forall i$

the mixing matrix is unique.

Agarwal, Pal, Srivastav, AT; **JHEP 06 (2022) 020**

Web-2 at $\mathcal{O}(\alpha_s^M)$ $S = \{s(d_1), \dots, s(d_n)\}$

A general web containing both reducible & irreducible diagrams

Normal Ordering

Completely Entangled

Partially Entangled

$$R = \begin{pmatrix} I_{k \times k} & (A_U)_{k \times (l-k)} \\ O_{(l-k) \times k} & (A_L)_{(l-k) \times (l-k)} \\ \hline & O_{m \times l} & D_{m \times m} \end{pmatrix}$$

$$\frac{d_l}{d_{l+1}} = \frac{d_{l+1}}{d_{l+1}} = \frac{d_l}{d_{l+1}}$$

Reducible

A and D diagonal blocks of mixing matrix R

$$R = \begin{pmatrix} I_{k \times k} & (A_U)_{k \times (l-k)} \\ O_{(l-k) \times k} & (A_L)_{(l-k) \times (l-k)} \\ 0_{m \times l} & D_{m \times m} \end{pmatrix}$$

The Block D satisfies the known properties of the mixing matrix!

 $D^2 = D$ Satisfy Row Sum Rule

Agarwal, Pal, Srivastav, AT; JHEP 06 (2022) 020

Satisfy Column Sum Rule

$$R = \begin{pmatrix} I_{k \times k} & (A_U)_{k \times (l-k)} \\ O_{(l-k) \times k} & (A_L)_{(l-k) \times (l-k)} \\ O_{m \times l} & D_{m \times m} \end{pmatrix}$$

The Block D satisfies the known properties of the mixing matrix!

 $D^2 = D$ Satisfy Row Sum Rule

If $S = \{s_{l+1}, \dots, s_{l+m}\}$ With all entries non vanishing Using Uniqueness Theorem

D block is known if any web with same S has been calculated.

Block D

Agarwal, Pal, Srivastav, AT; **JHEP 06 (2022) 020**

Satisfy Column Sum Rule

Block A Coarse graining : The idea of Fused Webs

Colour factor of a Fused diagram = Colour factor of the original diagram s-factors are defined in the usual way.

Application of fused web formalism

Cweb
$$W_4^{(2,1)}(1,1,1,4)$$
:

12 diagrams

Completely Entangled: 2 Partially Entangled:4 Reducible: 6

$$R = \begin{pmatrix} I_2 & A_U \\ O_{4 \times 2} & R(1_2) & X \\ O_{2 \times 2} & R(1_2) \\ 0_{6 \times 6} & D \end{pmatrix}$$

Cweb $W_4^{(2,1)}(1,1,1,4)$:

(Its only completely and partially entangled diagrams)

Application of fused web formalism

Cweb
$$W_4^{(2,1)}(1,1,1,4)$$
:

12 diagrams

Completely Entangled: 2 Partially Entangled:4 Reducible: 6

$$R = \begin{pmatrix} I_2 & A_U \\ 0_{4 \times 2} & R(1_2) & X \\ 0_{2 \times 2} & R(1_2) \\ 0_{6 \times 6} & D \end{pmatrix}$$

Agarwal, Pal, Srivastav, AT; JHEP 06 (2022) 020

5

Application of fused web formalism

The sum of diagonal entries = Rank

Rank = # of Exponentiated Colour factors

We can obtain the number of exponentiated colour factors Using Fused Webs formalism

All order predictions for two special classes

$$R = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 & -1/2 \\ 0 & 1 & 0 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & 0 & -1/2 & -1/2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 0 & 0 & 1/2 & -1/2 \\ 0 & 0 & 0 & 0 & -1/2 & 1/2 \end{pmatrix}$$

R =

- Using our Fused Web formalism we can obtain the diagonal blocks of R
- Diagonal Blocks are I or mixing matrices themselves
- # Exponentiated colour factors can be predicted using the diagonal blocks
- All order predictions can be made for special classes

Summary

Thank You!

Backup Slides

New Results at 4 loops (3 and 2-leg webs)

Diagrams	Sequences	5
C_1	$\{\{BA\}, \{GFE\}\}$	
C_2	$\{\{BA\}, \{FGE\}\}$	
C_3	$\{\{BA\}, \{FEG\}\}$	
C_4	$\{\{AB\}, \{GFE\}\}$	
C_5	$\{\{AB\}, \{FGE\}\}$	
C_6	$\{\{AB\}, \{FEG\}\}$	

$$(YC)_1 = if^{af}$$
$$-if$$

Exponentiated **Colour Factors**

 $(YC)_3 = -if^{abm}f^{bcg}f^{efg}\mathbf{T}_1^m\mathbf{T}_2^c\mathbf{T}_3^e\mathbf{T}_3^f\mathbf{T}_3^a$

AT et al (to appear)

 ${}^{fk}f^{bcg}f^{efg}\mathbf{T}_1^b\mathbf{T}_1^a\mathbf{T}_2^c\mathbf{T}_3^e\mathbf{T}_3^k + if^{aeh}f^{bcg}f^{efg}\mathbf{T}_1^b\mathbf{T}_1^a\mathbf{T}_2^c\mathbf{T}_3^h\mathbf{T}_3^f$ $f^{abm}f^{bcg}f^{efg}\mathbf{T}_1^m\mathbf{T}_2^c\mathbf{T}_3^e\mathbf{T}_3^f\mathbf{T}_3^a$

 $(YC)_2 = if^{afk} f^{bcg} f^{efg} \mathbf{T}_1^b \mathbf{T}_1^a \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^k - if^{abm} f^{bcg} f^{efg} \mathbf{T}_1^m \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^f \mathbf{T}_3^a$

 $(YC)_4 = if^{afk} f^{bcg} f^{efg} \mathbf{T}_1^a \mathbf{T}_1^b \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^k + if^{aeh} f^{bcg} f^{efg} \mathbf{T}_1^a \mathbf{T}_1^b \mathbf{T}_2^c \mathbf{T}_3^h \mathbf{T}_3^f$ $(YC)_5 = i f^{afk} f^{bcg} f^{efg} \mathbf{T}_1^a \mathbf{T}_1^b \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^k$

 $\mathbf{W}_{4.\,\mathrm{I}}^{(1,0,1)}(1,1,2,2)$

Diagrams	Sequences	S-factors	$\begin{pmatrix} 1 \\ - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ - 1 \end{pmatrix}$	
C_1	$\{\{BA\},\{CD\}\}$	1	$\begin{pmatrix} 2 & 0 & 0 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix}$	
C_2	$\{\{BA\}, \{DC\}\}$	0	$R = \begin{bmatrix} -\overline{2} & 1 & 0 & -\overline{2} \\ 1 & 0 & 1 & -\overline{2} \end{bmatrix} D =$	D = (1
C_3	$\{\{AB\}, \{CD\}\}$	0	$-\frac{1}{2} 0 1 - \frac{1}{2}$	
C_4	$\{\{AB\}, \{DC\}\}$	1	$\left(-\frac{1}{2} \ 0 \ 0 \ \frac{1}{2} \right)$	

Exponentiated **Color factors**

$$(YC)_1 = if^{abg} f^{cdg} f^{edh} \mathbf{T}_1^a$$

 $(YC)_2 = -if^{abg} f^{cdg} f^{cej} \mathbf{T}_1^a$
 $(YC)_3 = if^{abg} f^{cdg} f^{edh} \mathbf{T}_1^a$

Agarwal, Danish, Magnea, Pal, AT; 2020

- $\mathbf{\Gamma}_2^b \mathbf{T}_3^e \mathbf{T}_3^c \mathbf{T}_4^h i f^{abg} f^{cdg} f^{cej} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^j \mathbf{T}_4^d \mathbf{T}_4^e,$ $_{1}^{a}\mathbf{T}_{2}^{b}\mathbf{T}_{3}^{j}\mathbf{T}_{4}^{d}\mathbf{T}_{4}^{e}\,,$
- $\mathbf{\Gamma}_2^b \mathbf{T}_3^e \mathbf{T}_3^c \mathbf{T}_4^h f^{abg} f^{cdg} f^{cej} f^{edh} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^j \mathbf{T}_4^h$.

Mixing matrices

Cwebs

Replica Trick

Replicated correlator

Order N_r **term**

Combinatorics to extract ECF

Inhouse **Mathematica** Code

Set of diagrams built out of gluon correlators N_r identical copies of gauge fields are introduced,

Wilson lines are replicated

$$\mathcal{S}_{n}^{ ext{repl.}}\left(\gamma_{i}
ight)=\left[\mathcal{S}_{n}\left(\gamma_{i}
ight)
ight]^{N_{r}}=\exp\left[N_{r}\,\mathcal{W}_{n}(\gamma_{i})
ight]$$

- # of hierarchies *h*(*m*) between *m* replica numbers
- •
- Algorithm gives ECF

The algorithm from generation of diagrams \rightarrow computation ECF is implemented \rightarrow Mixing matrices

Agarwal, Danish, Magnea, **Pal, AT ; 2020**

Gardi, Laenen, Stavenga, White, 2010 See also: Vladimirov, 2014-2017

$= \mathbf{1} + N_r \mathcal{W}_n(\gamma_i) + \mathcal{O}(N_r^2)$

• Assign replica number *i* to each connected gluon correlator • Replica ordering operator to order colour generators \mathbf{T}_{k}^{i} on each line

Results at 4 loops

Wilson line Correlators (Cwebs)	# of webs	Largest dimension of mixing matrix
5 legs	9	24
4 legs	21	24
3 legs	23	36
2 legs	8	36

Fubini numbers 1,3,13,75,541,4683, ... Generating Function of Fubini numbers h(m) $\frac{1}{2 - \exp(x)} - 1 \equiv \sum_{m=1}^{\infty} h(m) \frac{x^m}{m!}$

Agarwal, Danish, Magnea, Pal, AT; 2020

Loop order (m)	Maximum number of hierarchies
1	
2	3
3	13
4	75
5	541
6	4683

Soft Anomalous Dimension

IR behaviour of scattering amplitude \leftrightarrow Wilson line correlator

Soft matrix

 $\mathcal{S}_n \Big(eta_i \cdot eta_j, lpha_s \Big)$

The Wilson line

 $\Phi_{\beta}\left(\infty,0\right)\equiv I$

Soft anomalous dimension

 $\mathcal{S}_n \Big(eta_i \cdot eta_j, lpha_s \Big)$

$$\left(\mu^2\right),\epsilon
ight)\equiv\left<0
ight|\prod_{k=1}^n\Phi_{eta_k}\left(\infty,0
ight)\left|0
ight>$$

$$P \exp\left[\mathrm{i}g \int_0^\infty d\lambda\,eta\cdot\mathbf{A}(\lambdaeta)
ight]$$

$$(\mu^2),\epsilon\Big) = \mathcal{P} \exp\left[-rac{1}{2}\int_0^{\mu^2}rac{d\lambda^2}{\lambda^2} \mathbf{\Gamma}_n\Big(eta_i\cdoteta_j,lpha_s(\lambda^2),\epsilon
ight)
ight]$$

Web (w): A set of diagrams closed under permutations of the gluon attachments on the Wilson lines.

The exponent $W(\gamma_i)$ grouped into webs

$R_w(D,D')$ Web mixing matrix

A 3 loop web 4×4 mixing matrix

(Gardi, Smillie, White, et al)

