Resummation

Sudakov logarithms in dijet photoproduction at low x

Pieter Taels Universiteit Antwerpen Worksho

October 31 - November 4, 2022

University of Antwerp Particle Physics Group

Collinear factorisation

$$\sigma_{\rm coll} = \hat{\sigma}(\mu^2) \otimes f(x_a, \mu^2) \otimes f(x_b, \mu^2) + \mathcal{O}(\Lambda_{\rm QCD}/\mu)^n$$

Large logarithms $\ln(\mu^2/\Lambda_{\rm QCD}^2)$ resummed using DGLAP

Transverse-momentum dependent factorisation

Collinear factorisation needs to be generalised in presence of additional scale $\mu_b^2 \sim \mathbf{k}_\perp^2$

Additional Sudakov logarithms $\ln(\mu^2/\mathbf{K}_{\perp}^2)$ resummed using CSS

Collins, Soper, Sterman ('85-'89) Collins (2011) Echevarria, Idilbi, Scimemi (2012)

$$\sigma_{\text{HEF}} = \hat{\sigma} \left(\frac{k_a^2}{\mu^2}, \frac{k_b^2}{\mu^2}, \mu^2 \right) \otimes \mathcal{G}(x_a, \mathbf{k}_{a\perp}, \mu^2) \otimes \mathcal{G}(x_b, \mathbf{k}_{b\perp}, \mu^2) + \mathcal{O} \left(\frac{\Lambda}{\mu} \right)^n$$

Additional logarithms $\ln(s/\mu^2) \sim \ln(1/x)$ resummed using BFKL

Catani, Ciafaloni, Hautmann ('90-'94)

Combining low-x and Sudakov resummation

Simultaneous resummation of $\ln(1/x)$ and $\ln(\mu^2/\mathbf{k}_{\perp}^2)$? Many approaches and implementations:

SW: Balitsky, Tarasov (2015)

HEF: Deak, Hautmann, Jung, Kutak, van Hameren, Sapeta, Hentschinski (2016-2021) **BFKL**: Nefedov (2021)

PB: Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek (2022)

CGC: Mueller, Xiao, Yuan (2011); Xiao, Yuan, Zhou (2017); Stasto, Wei, Xiao, Yuan (2018); PT, Altinoluk, Beuf, Marquet (2022); Caucal, Salazar, Schenke, Venugopalan (2022)

Why (not) the Colour Glass Condensate?

Saturation scale $Q_s^2(A, x) \simeq \frac{A^{1/3}}{x^{0.3}}$, e.g. $Q_s^2 \simeq 35 \text{ GeV}^2$ for lead at $x = 10^{-3}$

All-twist framework, all hadronic operators ~ Q_s^2/μ^2 included

$$\sigma_{\rm CGC} \neq \hat{\sigma} \otimes \mathcal{G}$$

Mueller, McLerran, Venugopalan, Jalilian-Marian, Kovner, Leonidov, Iancu, Weigert (1990-2001)

 $\sigma_{\text{CGC, TMD}} = \hat{\sigma}(\mathbf{k}_{\perp}^2, \mu_b^2) \otimes f(x_a, \mu^2) \otimes f(x_b, \mathbf{k}_{\perp}, \mu^2) + \mathcal{O}(Q_s^2/\mu^2) + \mathcal{O}(\alpha_s^n)$

Dominguez, Marquet, Xiao, Yuan (2011)

CGC in the TMD limit

$$\Gamma^{\mu\nu}(x,\mathbf{k}) = \frac{2}{p_A^-} \int \frac{\mathrm{d}\xi^+ \mathrm{d}^2 \boldsymbol{\xi}}{(2\pi)^3} e^{i\xi^+ k^-} e^{-i\boldsymbol{\xi}\mathbf{k}} \langle p_A | \mathrm{Tr} \, F^{-\mu}(0) \mathcal{U}(0,\boldsymbol{\xi}^+,\boldsymbol{\xi}) F^{-\nu}(\boldsymbol{\xi}^+,\boldsymbol{\xi}) | p_A \rangle$$

(Gluon) TMDs are process-dependent through gauge links / Wilson lines $\Gamma^{\mu\nu}(x,\mathbf{k}) = -\frac{g_T^{\mu\nu}}{2} \mathcal{F}_{WW}(x,\mathbf{k}) + \left(\frac{k_T^{\mu}k_T^{\mu}}{\mathbf{k}^2} + \frac{g_T^{\mu\nu}}{2}\right) \mathcal{H}_{WW}(x,\mathbf{k})$

Contribution from linearly polarised gluons even in unpolarised hadron

Full Wilson-line and spin structure not included in k_t -factorisation

$$\mathcal{F}_{i}(x, \mathbf{k}_{\perp}) = \mathcal{G}(x, \mathbf{k}_{\perp}) + \mathcal{O}(Q_{s}^{2}/\mathbf{k}_{\perp}^{2})$$
$$\mathcal{H}_{i}(x, \mathbf{k}_{\perp}) = \mathcal{G}(x, \mathbf{k}_{\perp}) + \mathcal{O}(Q_{s}^{2}/\mathbf{k}_{\perp}^{2})$$

Unpolarised gluon TMD with gauge structure i

Linearly polarised gluon TMD with gauge structure i

Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren (2015) Altinoluk, Boussarie, Kotko (2019)

CGC in the TMD limit

Marquet, Roiesnel, PT (2018)

Dijet photoproduction at NLO in the CGC

PT, Altinoluk, Beuf, Marquet (2022)

Framework: dipole formulation of CGC, light-cone perturbation theory ${}_{f}\langle (\mathbf{q})[\vec{p}_{1}]_{s_{1}}; (\bar{\mathbf{q}})[\vec{p}_{2}]_{s_{2}}|\hat{F} - 1|(\boldsymbol{\gamma})[\vec{q}]_{\lambda}\rangle_{i}$ $= \langle (\mathbf{q})[\vec{p}_{1}]_{s_{1}}; (\bar{\mathbf{q}})[\vec{p}_{2}]_{s_{2}}|\mathcal{U}(+\infty, 0)(\hat{F} - 1)\mathcal{U}(0, -\infty)|(\boldsymbol{\gamma})[\vec{q}]_{\lambda}\rangle$

10

LCPT: Bjorken, Kogut, Soper (1971) Inclusive DIS: Beuf (2016-2017) **DIS:** Caucal, Salazar, Venugopalan (2022) **Dihadron:** Bergabo, Jalilian-Marian (2022) **Diffraction:** Emilie Li (REF)

UV divergences

 $k_\perp \to \infty$ in loops, regulated with dimensional regularisation, no leftover logarithms

 $(k^+, \mathbf{k}_{\perp}) \rightarrow 0$ in final state, regulated with dimensional regularisation, no leftover logarithms

Rapidity divergences

 $k^+ \rightarrow 0$, regulated with cutoff k_{\min}^+ , 'renormalisation scale' k_f^+ , absorbed into JIMWLK evolution of LO cross section

$$d\sigma_{\rm NLO} = \int_{k_{\rm min}^+}^{k_f^+} \frac{\mathrm{d}p_3^+}{p_3^+} \hat{H}_{\rm JIMWLK} d\sigma_{\rm LO} + \int_{k_{\rm min}^+}^{+\infty} \frac{\mathrm{d}p_3^+}{p_3^+} \Big[\mathrm{d}\tilde{\sigma}_{\rm NLO} - \theta(k_f^+ - p_3^+) \hat{H}_{\rm JIMWLK} \mathrm{d}\sigma_{\rm LO} \Big]$$

Collinear-soft divergences

Mix of dimensional regularisation and cutoff method Collinear divergences cancel between inside-jet radiation and self-energy Leftover soft divergences cancel between radiation in-and outside the jet

Back-to-back limit: Sudakov logarithms

Remnants of soft-collinear generate Sudakov double log with wrong sign! $d\sigma_{\rm NLO}^{\rm TMD} = d\sigma_{\rm LO}^{\rm TMD} \times \frac{\alpha_s N_c}{4\pi} \ln \left(\frac{\mathbf{P}_{\perp}^2 (\mathbf{b} - \mathbf{b}')^2}{c_0^2} \right)^2 \qquad \begin{array}{c} \mathbf{P}_{\perp}^2 \sim \mu^2 \\ (\mathbf{b} - \mathbf{b}')^2 \sim 1/\mathbf{k}_{\perp}^2 \end{array}$... but in our framework hard to distinguish soft $(k^+, \mathbf{k}_{\perp}) \rightarrow 0$ and rapidity $k^+ \rightarrow 0$ divergences

oversubtraction of high-energy logs via JIMWLK?

Caucal, Salazar, Schenke, Venugopalan (2022)

Kinematically consistent low-x resummation

JIMWLK evolution along p^+ in interval $k_{\min}^+ \rightarrow k_f^+$

'Naive' approach: strong ordering in p^+ only, implicitly assumes $s \to \infty$

More realistic approach calls for additional ordering in p^- , and additional renormalisation scale k_f^-

Implementing this ordering in final-state diagrams with suitable choice $k_f^+ = \frac{p_{j1}^+ p_{j2}^+}{q^+}$ and $k_f^+ = \frac{\mathbf{P}_{\perp}^2}{2k_f^+}$ exactly compensates for wrong sign! We end up with expected:

$$d\sigma_{\rm NLO}^{\rm TMD} = d\sigma_{\rm LO}^{\rm TMD} \times -\frac{\alpha_s N_c}{4\pi} \ln\left(\frac{\mathbf{P}_{\perp}^2 (\mathbf{b} - \mathbf{b}')^2}{c_0^2}\right)^2$$

Beyond large- N_c and double log: see Farid Salazar's talk tomorrow

Ciafaloni ('88); Andersson, Gustafson, Samuelsson ('96); Kwiecinski, Martin, Sutton ('96); Salam ('98); Motyka, Stasto (2009); Kutak, Golec-Biernat, Jadach (2011); Beuf (2014); Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2019); Hatta, Iancu (2016) Nefedov (2022)

Breaking of TMD factorisation (?)

At this point, we need rigorous power-counting à la SCET (Varun Vaidya's talk)

Caucal, Salazar, Schenke, Venugopalan (2022)

Outlook

Computed full NLO dijet photoproduction cross section in CGC

Recover correct Sudakov logs in TMD limit provided kinematical improved JIMWLK

Argued that k_t -factorisation needs extension when $\mu^2 \gg \mathbf{k}_{\perp}^2 \sim Q_s^2$... but then TMD factorisation is seemingly broken beyond LO

Thanks for your attention !