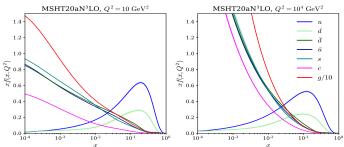
MSHT20aN3LO

Approximate N3LO PDFs with Theoretical Uncertainties

Thomas Cridge
DESY
31st October 2022

REF2022: University of Montenegro

In collaboration with J. McGowan, L.A. Harland-Lang and R.S. Thorne.


More information in article: 2207.04739.

Overview

Thomas Cridge MSHT20aN3LO Review 31st October 2022 2 / 26

PDFs at higher order with theoretical uncertainties

- As PDFs become more precise two issues are more pressing:
 - Moving to higher orders (N3LO).
 - Inclusion of theoretical uncertainties.
 - \Rightarrow we can address both in one go! \Rightarrow MSHT20aN3LO PDFs.
- Idea is to include known N3LO effects already into PDFs and to parameterise remaining unknown pieces via nuisance parameters.
- Variation of these remaining unknown N3LO pieces then provides a theoretical uncertainty within an approximate N3LO fit (aN3LO).

Current Knowledge of N3LO

More information in article: 2207.04739, J. McGowan, TC, L.A. Harland-Lang, R.S. Thorne.

What do we need to know for N3LO PDFs?

- Full N3LO PDFs need all N3LO pieces for both PDFs and included cross-sections to be known, not yet possible as several pieces missing.
- Need to know:
 - ▶ Splitting functions at 4-loop to evolve PDFs in (x, Q^2) :

$$P(x,\alpha_s) = \alpha_S P^{(0)}(x) + \alpha_S^2 P^{(1)}(x) + \alpha_S^3 P^{(2)}(x) + \alpha_S^4 P^{(3)}(x) + \dots$$

▶ Transition Matrix Elements - at 3-loop to change number of PDF flavours at heavy quark mass (m_h) thresholds.

$$f_{\alpha}^{n_f+1}(x,Q^2) = [A_{\alpha i}(Q^2/m_h^2) \otimes f_i^{n_f}(Q^2)](x)$$

► Coefficient Functions for DIS - at 3-loop to determine structure functions along with transition matrix elements.

$$F_2(x,Q^2) = \sum_{\alpha \in H, q, g; \beta \in q, H} (C_{\beta,\alpha}^{VF, n_f+1} \otimes A_{\alpha i}(Q^2/m_h^2) \otimes f_i^{n_f}(Q^2))$$

► Hadronic cross-section k-factors - at N3LO.

$$\sigma = \sigma_0 + \sigma_1 + \sigma_2 + \frac{\sigma_3}{3} + \dots \equiv \sigma_{N3LO} + \dots$$

What do we already know for N3LO PDFs?

- None of these are completely known, but a lot of information already leading theoretical uncertainty governed by remaining unknown pieces.
- Current Knowledge after a lot of effort (schematic summary):

Theory	Utility	Order required	What's known?
Splitting functions $P_{ab}^{(3)}(x)$	PDF evolution	4-loop	Mellin moments ³⁻⁵ , leading small-x behaviour ^{3,6-11} , plus some leading large-x in places ³
Transition matrix elements $A_{ab,H}^{(3)}(x)$	Transitions between number of flavours in PDFs at mass thresholds	3-loop	Mellin moments ¹² , leading small- x behaviour ¹³⁻¹⁴ , plus some leading large- x in places ^{14,15} .
Coefficient functions (NC DIS) $C_{H,a}^{VF,(3)}$	Combine with PDFs and Transition Matrix Elements to form Structure Functions (NC DIS)	N3LO	Some approximations to FFNS (low Q^2) coefficient functions at α_S^3 (with exact LL pieces at low x, NLL unknown) $^{16-18}$, ZM-VFNS (high Q^2) N3LO coefficient functions known exactly 19 . Therefore GM-VFNS not completely known.
Hadronic Cross-sections (K-factors)	Determine cross-sections at N3LO	N3LO	Very little (none in usable form for PDFs)

• Knowledge of lower orders can guide us for remaining unknown pieces.

Methodology

More information in article: 2207.04739, J. McGowan, TC, L.A. Harland-Lang, R.S. Thorne.

Thomas Cridge MSHT20aN3LO Review 31st October 2022 7 / 2

How can we incorporate N3LO knowledge into PDFs?

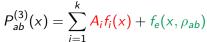
• Consider usual PDF fit probability: Theory Data Hessian matrix - contains uncorrelated (s_k) $P(T|D) \propto \exp(-\chi^2) \propto \exp(-\frac{1}{2}(T-D)^T H_0(T-D))$ $\propto \exp(-\frac{1}{2}\sum_{k=1}^{N_{pt}}\frac{1}{s_k^2}(D_k-T_k-\sum_{\alpha=1}^{N_{corr}}\beta_{k,\alpha}\lambda_{\alpha})^2+\sum_{\alpha=1}^{N_{corr}}\lambda_{\alpha}^2)$

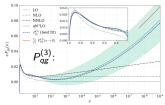
Experimental Nuisance parameters

- Include known N3LO pieces (tu) + parameterise remaining unknown pieces \Rightarrow theory nuisance parameters (θ') .
- Now theory $T' = T + tu + (\theta t)u = T'_0 + \theta'u$, i.e. use known info. to shift theory to N3LO central value then allow to vary by θ' .
- Assign θ' a Gaussian prior probability $P(\theta')$, standard deviation $\sigma_{\theta'}$:

$$P(\theta') = \frac{1}{\sqrt{2}\pi\sigma_{\theta'}} \exp\left(-\theta'^2/2\sigma_{\theta'}^2\right)$$

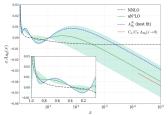
- Key questions:
 - 4 How do we determine the priors? From known info. and lower orders.
 - Where do we include the theory nuisance parameters? Next few slides.

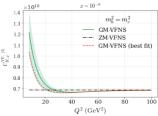

Thomas Cridge MSHT20aN3LO Review 31st October 2022 8 / 26


- Reminder needed for PDF evolution, we know:
 - Even low-integer N Mellin Moments (4-8) - constrain intermediate and high x via $\int_0^1 dx \, x^{N-1} P(x)$.
 - ► Form at low x from resummation LL log coefficients. (For $P_{gg}^{(3)}$ also NLL known)
- How do we incorporate this information?
 - ▶ Mellin moments provide constraints parameterise $P_{-h}^{(3)}(x)$ with functions $f_{1,...,k}$ where k = No. of known moments.
 - ▶ Exact information included in $f_e(x, \rho_{ab})$ LL terms at low x included, coefficient of low x NLL is variational (theory nuisance) parameter ρ_{ab} .

$$f_e(x, \rho_{qg}) = \frac{C_A^3}{3\pi^4} (\frac{82}{81} + 2\zeta_3) \frac{1}{2} \frac{\ln^2(1/x)}{x} + \rho_{qg} \frac{\ln 1/x}{x}$$

1 Theory Nuisance Parameter per Splitting Function - 5 total from here.


So overall:

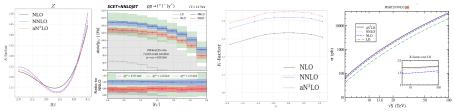


Transition Matrix Elements and DIS Coefficient Functions

- Transition matrix elements needed to transition between number of flavours of PDFs at heavy quark masses, enter also structure functions:
 - ► Several transition matrix elements known completely $A_{Hq}^{PS,(3)}$, $A_{gq,H}^{(3)}$.
 - ▶ Remaining not completely known $(A_{Hg}^{(3)}, A_{qq,H}^{NS,(3)}, A_{gg,H}^{(3)})$ deal with as for Splitting functions \Rightarrow 1 nuisance parameter each 3 in total from here.
- DIS Coefficient Functions needed for N3LO Structure Functions:
 - ▶ Interpolate between high and low Q^2 known/approximated forms, include transition matrix elements to ensure cancellation of discontinuities.
 - ▶ Approximations to low- Q^2 FFNS coefficient functions $C_{H,\{q,g\}}$ have unknown NLL small x term $\Rightarrow 2$ theory nuisance parameters c_q^{NLL} , c_g^{NLL} .

Thomas Cridge MSHT20aN3LO Review 31st October 2022 10 / 26

Hadronic K-factors


- N3LO calculations becoming available but not yet for PDF fits:
 - ► Higgs ggF, VBF and VH ^{24,25,26,27} doesn't go in PDFs.
 - ▶ Drell-Yan Inclusive and some differential calculations ^{28,29,30,31} not yet for relevant fiducial cross-sections or in form usable for PDFs.
 - ▶ Top (aN3LO) soft gluon resummation approximation ³².
- Overall, much less known than for other N3LO PDF fit ingredients.
- Parameterise N3LO k-factor as combination of NLO and NNLO k-factors, a₁, a₂ coeffs incorporating MHOUs into PDF uncertainties:

$$\mathbf{K}^{N3LO/LO} = \mathbf{K}^{NNLO/LO}(1 + \mathbf{a}_1 \mathcal{N}^2 \alpha_S^2 (\mathbf{K}^{NLO/LO} - 1) + \mathbf{a}_2 \mathcal{N} \alpha_S (\mathbf{K}^{NNLO/LO} - 1))$$

- Default prior is $a_1, a_2 = 0$, i.e. no N3LO correction.
- Categorise all hadronic processes into 5 types jets (or dijets), Drell-Yan, top, vector boson p_T /jets, and dimuon.
- ullet 2 theory nuisance parameters each \Rightarrow 10 theoretical parameters added.

Hadronic K-factors

- Drell-Yan (lower left 2 plots)
 - \bullet Fit prefers a $\approx 1\%$ decrease in the N3LO k-factors relative to NNLO.
 - Improved perturbative convergence with aN3LO PDFs.
 - In agreement with recent N3LO results (which used NNLO PDFs)³⁰.

- 2 Top (upper right two plots)
 - \bullet Fit prefers a $\approx 4\%$ increase in the aN3LO k-factors relative to NNLO.
 - Improved perturbative convergence with aN3LO PDFs.
 - Consistent with recent approximate N3LO result³².

Theory Nuisance Parameter Summary

- So in total, we add 20 added theory nuisance parameters, on top of 51 central PDF parameters (which give 32 PDF uncertainty parameters).
- Now have 52 eigenvectors (32 as before + 20 new theory).

Origin	Parameters	Number of Added Parameters
$\begin{array}{c c} & \text{Splitting Functions} - \\ P_{qg}^{(3)}, P_{qq}^{NS,(3)}, P_{qq}^{PS,(3)}, P_{gg}^{(3)}, P_{gg}^{(3)} \end{array}$	$ ho_{qg}$, $ ho_{qq}^{NS}$, $ ho_{qq}^{PS}$, $ ho_{gq}$, $ ho_{gg}$	5
Transition Matrix Elements - $A_{Hg}^{(3)}, A_{qq,H}^{NS,(3)}, A_{gg,H}^{(3)}$	a_{Hg} , $a_{qq,H}^{NS}$, $a_{gg,H}$	3
DIS Coefficient Functions - $C_{H,q}^{(3),NLL}$, $C_{H,g}^{(3),NLL}$	c_q^{NLL}, c_g^{NLL}	2
Hadronic K-factors -		
Drell-Yan	DY_{NLO}, DY_{NNLO}	
Тор	Top_{NLO} , Top_{NNLO}	$5 \times 2 = 10$
Jets	Jet _{NLO} , Jet _{NNLO}	3 × 2 = 10
p_T Jets	$p_T Jet_{NLO}, p_T Jet_{NNLO}$	
Dimuon	Dimuon _{NLO} , Dimuon _{NNLO}	

 Using MSHT20an3lo_as118 eigenvectors as usual naturally incorporates MHOUs at aN3LO into the PDF uncertainties.

N.B. 2 slightly different cases - don't keep (default) or keep correlations of k-factors - "KCorr" set.

Impact on fit and PDFs

More information in article: 2207.04739, J. McGowan, TC, L.A. Harland-Lang, R.S. Thorne.

Perform aN3LO fit - fit quality:

- Perform aN3LO fit with <u>identical</u> dataset to MSHT20 NNLO PDF fit.
- Overall fit quality (4363 points)

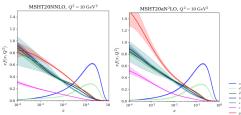
2 /N .	LO	NLO	NNLO	aN3LO
χ - / N _{pts}	2.57	1.33	1.17	1.14

Smooth fit improvement with order and amount of improvement reducing with order - as we might hope.

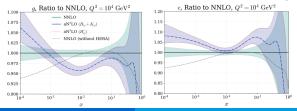
- Improvement in fit quality from NNLO to aN3LO is $\Delta \chi^2 = -160.1$.
 - Much larger than number of parameters (20) introduced.

Dataset type	Total χ^2/N_{pts}	$\Delta \chi^2$ from NNLO	$\Delta\chi^2$ from NNLO (but no
Dataset type	Total X / Npts	Δχ Irom NNLO	N3LO k-factors)
DIS datasets	2580.9/2375	-90.8	-86.2
Drell-Yan datasets	1069.4/864	-18.5	+0.7
Dimuon datasets	125.0/170	-1.2	+0.5
Top datasets	75.1/71	-4.2	-2.5
p _T jets datasets	138.0/144	-77.2	-54.7
Jet datasets	963.6/739	+21.5	+42.2
Total	4961.2/4363	-160.1	-93.3

- Over half of fit improvement occurs without N3LO k-factors freedom.
- Many theory changes not centred on NNLO, rather on known N3LO which can depart significantly, fit clearly preferring known N3LO info.


aN3LO Fit Quality Breakdown:

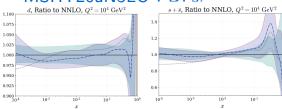
		1	
Dataset type	Total χ^2/N_{pts}	$\Delta\chi^2$ from NNLO	$\Delta \chi^2$ from NNLO (but no
	, , , , , , , , , , , , , , , , , , , ,		N3LO k-factors)
DIS datasets	2580.9/2375	-90.8	-86.2
Drell-Yan datasets	1069.4/864	-18.5	+0.7
Dimuon datasets	125.0/170	-1.2	+0.5
Top datasets	75.1/71	-4.2	-2.5
p_T jets datasets	138.0/144	-77.2	-54.7
Jet datasets	963.6/739	+21.5	+42.2
Total	4961.2/4363	-160.1	-93.3


- Biggest improvement in DIS datasets, where most N3LO information known and included.
- Drell-Yan, dimuon, top improvements more from N3LO k-factor freedom; DY and top in approximate agreement with recent results.
- p_T jets improves significantly, mostly without N3LO k-factors ATLAS 8 TeV Zp_T large improvement from $\chi^2/N=1.81$ to 1.04.
- Zp_T constrains high x gluon, it saw similar improvement at NNLO when HERA data removed evidence aN3LO removes some tension between small x and high x data more info. in backup.
- Jets gets worse If replace with dijets, fit quality improves at aN3LO.

aN3LO PDFs:

N.B. Inclusive jets included in default aN3LO fits not dijets.

- Gluon raises significantly at low x from large logs in splitting functions, not present at NNLO. Reduction at $x \sim 10^{-2}$ due to splitting functions.
- Heavy quarks c and b (perturbatively generated) raised due to increase in gluon at lower x and raised A_{Hg} at high x.


Green is NNLO, baseline for ratio.

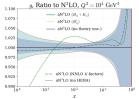
Blue dashed is aN3LO central + correlated k-factors in uncertainties.

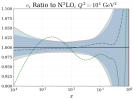
Red line uncertainties with k-factors uncorrelated on aN3LO central

Grey dashed is NNLO fit without HERA data.

MSHT20aN3LO PDFs:

Green is NNLO, baseline for ratio.


Blue dashed is aN3LO central + correlated k-factors in uncertainties.


Red line uncertainties with k-factors

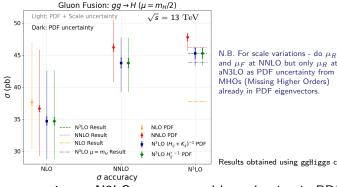
uncorrelated on aN3LO central.

Grey dashed is NNLO fit without
HERA data

- Increase in $s + \bar{s}$ and light quarks at high x, aN3LO more similar to "no HERA" fit eased tension.
- Gluon uncertainty enlarged at low x from splitting functions.
- Charm uncertainty enlarged, from both A_{Hg} at high x and gluon.
- Correlated and uncorrelated k-factors give consistent uncertainties.

Blue band - no theoretical uncertainties included.
Green band is full MSHT20aN3LO uncertainty inc.
theoretical uncertainties (correlated K-factors).
Red lines same as green bands
but uncorrelated K-factors.
Grey dashed line is fit without N3LO K-factors.

Green dashed line is NNLO no HERA.


Effect on Cross-sections

More information in article: 2207.04739, J. McGowan, TC, L.A. Harland-Lang, R.S. Thorne.

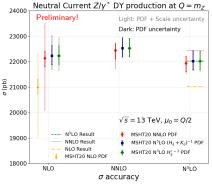
Thomas Cridge MSHT20aN3LO Review 31st October 2022 19 / 20

Impact on Higgs cross-sections - ggF:

 Consider impact of our aN3LO PDFs on known N3LO Higgs production in gluon fusion^{24,25} - shift down due to change in gluon:

and μ_F at NNLO but only μ_R at aN3LO as PDF uncertainty from MHOs (Missing Higher Orders) already in PDF eigenvectors.

Results obtained using ggHiggs code³⁶.


- Increase in cross-section at N3LO compensated by reduction in PDFs at aN3LO \Rightarrow important to consider PDF and σ changes together.
- aN3LO result lies within uncertainty band of full NNLO.
- aN3LO PDF uncertainty bands enlarged inclusion of MHOUs.

Very preliminary!

Impact on Drell-Yan cross-sections:

Produced (in past week) using the n3loxs code²⁷.

Consider impact of our aN3LO PDFs on Drell-Yan production at LHC,
 e.g. Neutral current at m_Z at 13 TeV:

- Only small change in using aN3LO PDFs relative to NNLO PDFs.
- Prediction with NNLO and aN3LO PDFs are stable.
- PDF uncertainties dominate at NNLO and N3LO, indeed enlarged from MSHT20aN3LO with inclusion of MHOUs.

Usage

More information in article: 2207.04739, J. McGowan, TC, L.A. Harland-Lang, R.S. Thorne.

Thomas Cridge MSHT20aN3LO Review 31st October 2022 22 / 20

- MSHT20an3lo_as118 PDFs available on MSHT website.
- The eigenvectors include theory uncertainties from MHOs in PDFs.
- We assume the dominant MHO uncertainty is from missing N3LO.

Recommendations:

- If N3LO cross-sections are known use our aN3LO PDFs and their associated theoretical uncertainties.
- For DIS processes, using our aN3LO PDF set is advised along with our aN3LO coefficient functions.
- **9** For the other 5 process categories in the fit (Drell-Yan, top, vector boson p_T , jets and dimuon), we fit K-factors and provide these fitted aN3LO K-factors to be used along with our aN3LO PDFs.
- For processes not included in the fit e.g. Higgs, the change of the aN3LO compared to the NNLO PDFs is representative of the potential theoretical uncertainty in the NNLO PDFs.

Conclusions

More information in article: 2207.04739, J. McGowan, TC, L.A. Harland-Lang, R.S. Thorne.

Thomas Cridge MSHT20aN3LO Review 31st October 2022 24 / 2

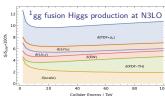
Conclusions:

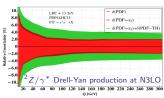
- As demands on PDFs become stronger we must aim for both more precise and more accurate PDF uncertainties.
- This means we must include previously neglected effects both higher orders and theoretical uncertainties.
- We have produced the first approximate N3LO PDFs, including both higher order effects in PDFs and theoretical uncertainties.
- Method provides an intuitive and controllable way to include theoretical uncertainties into PDFs. Can be updated as more information becomes available on N3LO.
- Our aN3LO PDFs are available and we encourage their use: MSHT20an3lo_as118.
- Can be used if N3LO is known or where not to evaluate uncertainty due to missing higher orders in PDFs and include higher order effects.
- Full information is available in the article 2207.04739.

References

- ¹ M. Cepeda et al., 1902.00134.
- 2 Duhr, Mistelberger, 2111.10379.
- 3 S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, 1707.08315.
- ⁴ A. Vogt et al., 1808.08981.
- 5 S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, 2111.15561.
- ⁶ S. Catani and F. Hautmann, Nucl. Phys. B 427, 475 (1994), hep-ph/9405388.
- ⁷ L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976).
- ⁸ E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977).
- 9 I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).
- ¹⁰ V. S. Fadin and L. N. Lipatov, hep-ph/9802290.
- 11 M. Ciafaloni and G. Camici, hep-ph/9803389.
- ¹² I. Bierenbaum, J. Blumlein, and S. Klein, 0904.3563.
- ¹³ H. Kawamura, N. A. Lo Presti, S. Moch, and A. Vogt, 1205.5727.
- ¹⁴ J. Ablinger et al., 1409.1135.
- ¹⁵ J. Ablinger et al., 1402.0359.
- 16 S. Catani, M. Ciafaloni, and F. Hautmann, Nucl. Phys. B 366, 135 (1991).
- ¹⁷ E. Laenen and S.-O. Moch, hep-ph/9809550..

- 18 H. Kawamura, N. A. Lo Presti, S. Moch, and A. Vogt, 1205.5727.
- 19 J. Vermaseren, A. Vogt, and S. Moch, hep-ph/0504242.
- 20 W. Van Neervan, A. Vogt, hep-ph/9907472.
- ²¹ W. Van Neervan, A. Vogt, hep-ph/0006154.
- 22 A. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, hep-ph/0006154.
- 23 A. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, hep-ph/0201127.
- ²⁴ C. Anastasiou et al., 1602,00695.
- ²⁵ B. Mistlberger, 1802.00833.
- ²⁶ F.A. Dreyer and A. Karlberg, 1606.00840.
- ²⁷ J. Baglio, C. Duhr, B. Mistlberger, R. Szafron, 2209.06138.
- $^{\rm 28}$ C. Duhr, F. Dulat and B. Mistlberger, 2001.07717.
- ²⁹ C. Duhr, F. Dulat and B. Mistlberger 2007.13313.
- ³⁰ X. Chen et al., 2107.09085.
- 31 C. Duhr and B. Mistlberger, 2111.10379.
- 32 N. Kidonakis, 2203.03698.
- 33 M. Bonvini, 1812.01958.
- 34 R.D. Ball et al, 1710.05935.
- ³⁵ H. Abdolmaleki et al, xFitter, 1802.00064.
- ³⁶ M. Bonvini, arXiv:1805.08785.
- ³⁷ M. Cacciari et al, 1506.02660.


Backup Slides


Note: For some of the more recent work, this project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE).

Thomas Cridge MSHT20aN3LO Review 31st October 2022 1 / 29

PDF Overview

- Significant developments on all three fronts experimental, methodological, and theoretical.
- Current generation of PDFs, CT18, MSHT20, NNPDF3.1/4.0 are the most accurate and precise to date.
- However as experimental precision improves, demands placed on PDFs in terms of precision and accuracy are the most stringent ever.
- PDFs therefore remain dominant uncertainties for many processes.
- Requires efforts to both:
 - Reduce current PDF uncertainties/differences precision increase.
 - 2 Better understand and determine PDF uncertainties accuracy increase.

How can we incorporate N3LO knowledge into PDFs?

After subbing in and rewriting obtain:

$$P(T|D) \propto \int d\theta' \exp\left(-\frac{1}{2}[(T' + \frac{\theta'}{\sigma_{\theta'}}u - D)^T H_0(T' + \frac{\theta'}{\sigma_{\theta'}}u - D) + \theta'^2/\sigma_{\theta'}^2]\right)$$

$$\propto \int d\theta' \exp\left(-\frac{1}{2}M^{-1}(\theta' - \bar{\theta}')^2 - \frac{1}{2}(T' - D)^T H(T' - D)\right)$$

$$\propto \int d\theta' \exp\left(-\chi_1^2 - \chi_2^2\right)$$

- First term is posterior penalty when the theory strays from the best fit.
- Second term is χ^2 from fitting procedure with $H = (H_0^{-1} + uu^T)^{-1}$ now containing also additional theoretical uncertainties.
- In addition, how we decompose H allows us to examine correlations of the theoretical nuisance parameters backup slides!
- Key questions:
 - How do we determine the priors?
 - Summary from known information and intuition from lower orders.
 - Where do we include the theory nuisance parameters? Next few slides.

- Reminder needed for PDF evolution, we know:
 - ► Even low-integer N Mellin Moments (4-8)
 - constrain intermediate and high x via $\int_0^1 dx \, x^{N-1} P(x)$.
 - Form at low x from resummation LL log coefficients. (For $P_{gg}^{(3)}$ also NLL known)
- How do we incorporate this information?
 - ▶ Mellin moments provide constraints parameterise $P_{ab}^{(3)}(x)$ with functions $f_{1,...,k}$ where k = No. of known moments.

E.g. $P_{qg}^{(3)}(x)$ (k=4): Try different functions for each f_i , include in uncertainty.

Lower x \longrightarrow $f_1(x) = \frac{1}{x}$ or $\ln^4 x$ or $\ln^3 x$ or $\ln^2 x$,

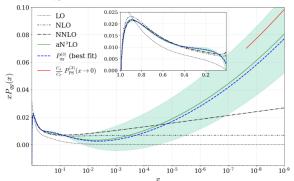
Intermediate x \longrightarrow $f_2(x) = \ln x$, $f_3(x) = 1$ or x or x^2 ,

Higher x \longrightarrow $f_4(x) = \ln^4(1-x)$ or $\ln^3(1-x)$ or $\ln^2(1-x)$ or $\ln(1-x)$,

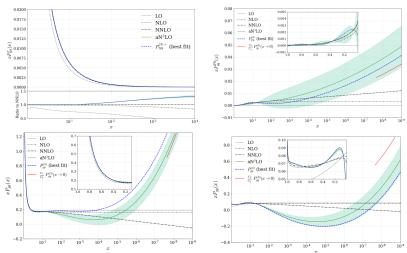
▶ Exact information included in $f_e(x, \rho_{ab})$ - LL terms at low x included, coefficient of low x NLL is variational (theory nuisance) parameter ρ_{ab} .

$$f_e(x,\rho_{qg}) = \frac{C_A^3}{3\pi^4} (\frac{82}{81} + 2\zeta_3) \frac{1}{2} \frac{\ln^2(1/x)}{x} + \rho_{qg} \frac{\ln 1/x}{x} \Rightarrow 1 \text{ Theory Nuisance Parameter per Splitting Function - } \frac{5 \text{ total from here.}}{2\pi^2} + \frac{1}{2\pi^2} \frac{\ln 1/x}{x} = \frac{1}{2\pi^2} \frac{\ln 1/x}{x} \frac{1}{2$$

So overall:


$$P_{ab}^{(3)}(x) = \sum_{i=1}^{K} A_i f_i(x) + f_e(x, \rho_{ab})$$

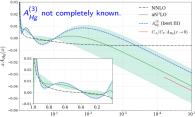
• A_i coefficients constrained by Mellin moments, with exact information included and ρ_{ab} coefficient of NLL varied to produce uncertainty:


$$P_{qg}^{(3)}(x) = A_1 \ln^2 x + A_2 \ln x + A_3 x^2 + A_4 \ln(1-x) + \frac{C_A^3}{3\pi^4} (\frac{82}{81} + 2\zeta_3) \frac{1}{2} \frac{\ln^2(1/x)}{x} + \rho_{qg} \frac{\ln 1/x}{x}$$

- Set ρ_{ab} variation by requiring:
 - **1** Low x Full function and small x description not in significant tension.
 - ② High x N3LO correction small and follows trend of NNLO at large x.
 - 3 Include effect of different $f_{1,...,k}$ for Mellin moment constraints.
- Some subjectivity in precise range, but no more than in scale variation.
- Results checked to not depend sensitively on the prior chosen.
- Similar approaches were used at NLO before full NNLO known and matched eventual full NNLO result well^{20,21,22,23} (e.g. by MRST).

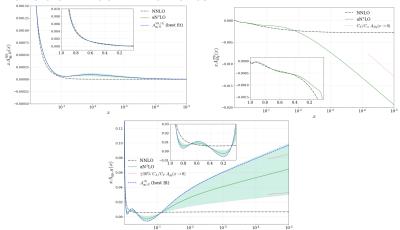
• Overall result for $P_{qg}^{(3)}$:

- Green Curve central result of prior, not centred on NNLO.
- Blue Dashed our best fit aN3LO, about which we produce uncertainties.
- Largest differences exist at low x, more divergent pieces gained at N3LO.
- Differences also at intermediate and high x, due to moment information.



• $P_{qq}^{NS}(x)$ has small uncertainty as more info known (e.g. 8 Mellin moments, more exact info.), also less affected by small x as non-singlet.

Transition Matrix Elements

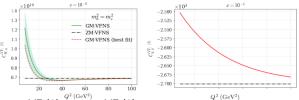

- Reminder needed to transition between number of flavours of PDFs at heavy quark masses, enter also structure functions. We know:
 - ► Even low-integer *N* Mellin Moments (4-8) - constrain intermediate and high *x* via $\int_0^1 dx \, x^{N-1} P(x)$.
 - ► Form at low x, in some case low and high x limits.
 - Several transition matrix elements known completely $A_{Hq}^{PS,(3)}$, $A_{gq,H}^{(3)}$, need to be approximated (without uncertainty) due to complex form.
- Deal with as for Splitting functions for $A_{Hg}^{(3)}$, $A_{qq,H}^{NS,(3)}$, $A_{gg,H}^{(3)}$
 - \Rightarrow 1 nuisance parameter each 3 in total from here $a_{Hg}, a_{qq,H}^{NS}, a_{gg,H}$.

Thomas Cridge MSHT20aN3LO Review 31st October 2022 8 / 29

Transition Matrix Elements:

• $A_{Hq}^{PS,(3)}$, $A_{gq,H}^{(3)}$ known completely, need to be approximated (without uncertainty) due to complex form. $A_{Hg}^{(3)}$, $A_{qq,H}^{NS,(3)}$, $A_{gg,H}^{(3)}$ have one theory nuisance parameter each at low x.

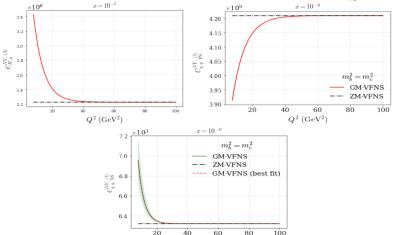
DIS Coefficient Functions


- Needed to produce N3LO Structure Functions, structure functions form large part of non-LHC data in PDF fits. We know:
 - Light flavour coefficient functions known, just need heavy flavour.
 - **Expressions** for heavy flavour in high and low Q^2 limits:
 - (ZM-VFNS) known exactly.
 - 1 Zero Mass $(Q^2 \to \infty)$ case 2 Massive case $Q^2 \le m_H^2$ (FFNS) approximations known.
- Need to interpolate to generate full General-Mass Variable Flavour Number Scheme (GM-VFNS) prediction for all Q^2 .
- Include Transition Matrix Elements at aN3LO (last slide) so full cancellation of PDF discontinuties in the structure functions.
- Therefore some DIS coefficient functions inherit some uncertainty bands from these, e.g. $C_{H,\sigma}^{VF,(3)}$ from $A_{H\sigma}^{(3)}$:

$$\begin{split} C_{H,g}^{VF,(3)} = & C_{H,g}^{FF,(3)} - C_{H,g}^{VF,(2)} \otimes A_{gg,H}^{(1)} - C_{H,H}^{VF,NS+PS,(2)} \otimes A_{Hg}^{(1)} \\ & - C_{H,g}^{VF,(1)} \otimes A_{gg,H}^{(2)} - C_{H,H}^{VF,(1)} \otimes A_{Hg}^{(2)} - C_{H,H}^{VF,(0)} \otimes A_{Hg}^{(3)} \end{split}$$

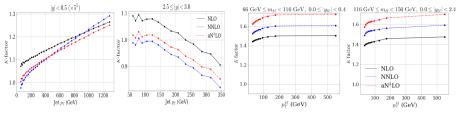
DIS Coefficient Functions

- Theoretical uncertainties included directly where relevant in some DIS coefficient functions, as well as those from transition matrix elements.
- Approximations to low- Q^2 FFNS coefficient functions $C_{H,\{q,g\}}$ include known LL small x terms and mass threshold info, but unknown NLL small x piece \Rightarrow introduce theory nuisance parameters c_q^{NLL} and c_g^{NLL} :


$$C_{H,i}^{(3),NLL}(Q^2 \to 0) \propto c_i^{NLL}[-4\frac{1}{x} + c_i^{LL}\frac{\ln 1/x}{x}], \text{ for } i = q,g.$$
 \Rightarrow 2 Theory Nuisance Parameters from here.

• Overall, $C_{Hq}^{VF,(3)}$ and $C_{Hg}^{VF,(3)}$ have uncertainties from added c_q^{NLL} and c_g^{NLL} parameters, $C_{Hg}^{VF,(3)}$ and $C_{qq,NS}^{VF,(3)}$ inherit uncertainty from $A_{Hg}^{(3)}$ and $A_{qq,NS}^{(3)}$. No theoretical uncertainties on $C_{qg}^{VF,(3)}$, $C_{qq,PS}^{VF,(3)}$.

DIS Coefficient Functions:


Note: Plots here only show uncertainties inherited from transition matrix elements, not $c_{q,g}^{NLL}$ parameters.

• $C_{Hq}^{VF,(3)}$ and $C_{Hg}^{VF,(3)}$ have uncertainties from c_q^{NLL} and c_g^{NLL} parameters, $C_{Hg}^{VF,(3)}$ and $C_{qq,NS}^{VF,(3)}$ inherit uncertainty from $A_{Hg}^{(3)}$ and $A_{qq,NS}^{(3)}$.

Hadronic K-factors

- Jets (lower left 2 plots)
 - Fit prefers a mild shift of aN3LO k-factors relative to NNLO.
 - Good qualitative perturbative convergence.

- **Vector boson** + **jets**, Zp_T (upper right two plots)
- \bullet Fit prefers larger shifts here, NLO \rightarrow NNLO and NNLO \rightarrow aN3LO similar.
- May be picking up sensitivity to all-order result via experimental data.
- Dimuon Semi-inclusive DIS
 - Already freedom to change BR($D \to \mu$) here, so limited sensitivity. BR reduces to 0.082 from 0.088 within allowed 0.092 \pm 0.01 range.

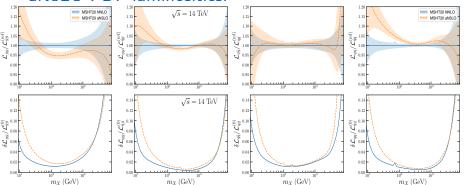
Dijet data: Preliminary!

 $\ensuremath{\mathsf{N.B.}}$ This is all Leading Colour, we have looked preliminarily at Full Colour and not found significant PDF changes.

- Inclusive jet data was the only class of processes where the fit worsened at aN3LO compared to NNLO.
- Dijets may have some advantages here 3D measurement now possible, non-unitary nature of inclusive jets, etc
- We have also investigated dijets instead:
 - Obtain better fit quality at NNLO and aN3LO than jets.
 - Generally pull improves Zp_T fit and worsens top slightly.
 - Moreover, dijet fit quality improves further slightly at aN3LO.

	N_{pts} χ^2/N_{pts}		N _{pts}		N _{pts}	χ^2/N_{pts}	
	rvpts	NNLO	aN3LO		rvpts	NNLO	aN3LO
ATLAS 7 TeV jets	140	1.58	1.54	ATLAS 7 TeV dijets	90	1.05	1.12
CMS 7 TeV jets	158	1.11	1.18	CMS 7 TeV dijets	54	1.43	1.39
CMS 8 TeV jets	174	1.50	1.56	CMS 8 TeV dijets	122	1.04	0.83
Total	472	1.39	1.43	Total	266	1.12	1.04

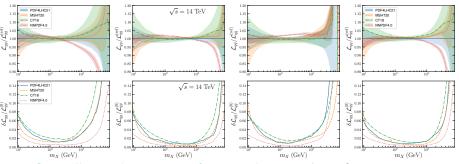
- Impact on PDFs and rest of data similar, more so at aN3LO.
- N.B. Dijets very poorly fit at NLO (particularly CMS 8 TeV dijets) need for NNLO.


aN3LO Theory Nuisance Parameters:

 \bullet Examine χ^2 penalties associated with moving theoretical nuisance parameters away from their priors in the aN3LO fit:

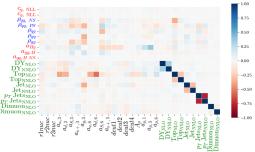
Low-Q ² Coefficient			
$c_a^{\text{NLL}} = -3.868$	0.004	$c_q^{NLL} = -5.837$	0.844
Transition Matrix Elements		,	
$a_{Hq} = 12214.000$	0.601	$a_{aa,H}^{NS} = -64.411$	0.001
$a_{gg,H} = -1951.600$	0.857	117	
Splitting Functions			
$\rho_{qq}^{NS} = 0.007$	0.000	$\rho_{gq} = -1.784$	0.802
$\rho_{qq}^{NS} = 0.007$ $\rho_{qq}^{PS} = -0.501$	0.186	$\rho_{gg} = 19.245$	3.419
$\rho_{qg} = -1.754$	0.015		
K-factors			
$DY_{NLO} = -0.307$	0.094	$DY_{NNLO} = -0.230$	0.053
$Top_{NLO} = 0.041$	0.002	$Top_{NNLO} = 0.651$	0.424
$Jet_{NLO} = -0.300$	0.090	$Jet_{NNLO} = -0.691$	0.478
$p_T \text{Jets}_{NLO} = 0.583$	0.339	$p_T \text{Jets}_{\text{NNLO}} = -0.080$	0.006
$Dimuon_{NLO} = -0.444$	0.197	$Dimuon_{NNLO} = 0.922$	0.850
N ³ LO Penalty Total	9.262 / 20	Average Penalty	0.463

- All but one within prior chosen variation (penalty < 1), many penalties very small - conservative.
- Average penalty across the 20 parameters is 0.463.
- Fit able to describe data well with only small departures around prior N3LO knowledge.



- PDF changes have implications for PDF luminosities for phenomenology.
- gg luminosity reduced around 100GeV and increased at 10GeV, gg uncertainty grows with inclusion of aN3LO and theoretical uncertainties.
- qq luminosity raised at low invariant masses from enhanced charm.
- Luminosity uncertainties enlarged (and more so at lower invariant masses) due to inclusion of aN3LO and PDF theory uncertainties.

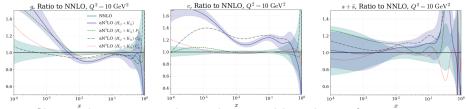
Global Fits Luminosities Comparison:


• Compare global fits at the level of the parton-parton luminosities:

- Generally good agreement for central m_X , at least for qq, qg, gg luminosities. Exception is NNPDF4.0 higher for $q\bar{q}$.
- More marked differences at high m_X , largely unconstrained so more extrapolation driven.
- Significant differences in uncertainties reflect differences in methodology/data.

aN3LO PDFs Correlations:

Examine correlations of theory parameters and other PDF parameters.

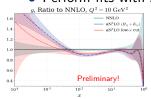

• Given expected and observed very limited correlation of K-factors with other theory parameters, can separate them out:

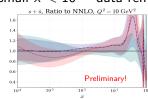
$$H_{ij}^{'-1} o H_{ij}^{-1} + \sum_{p=1}^{N_p} K_{ij,p}^{-1}$$
 Allows fit k-factors to be separated out - useful.

 Produce two PDF uncertainty sets - MSHT20an3lo_as118_Kcorr and MSHT20an3lo_as118, default is latter. Very little difference in PDF uncertainties!

aN3LO effects on PDFs:

 For gluon, charm and strange consider effects of only aN3LO splitting functions, heavy or light flavour coefficient functions (and associated transition matrix elements) to breakdown effects on PDFs:

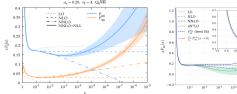

- ullet Gluon enhancement at low x dominated by splitting functions.
- Gluon reduction around $x \sim 10^{-2}$ from combination of splitting functions and coefficient functions.
- Charm enhancement largely due to heavy flavour coefficient function (and transition matrix elements) in combination with increased gluon.
- Strange enhancement at high x reflects splitting functions and heavy flavour coefficient functions.

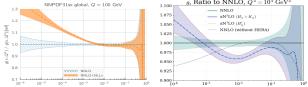

aN3LO PDFs - small x and high x: Preliminary!

- aN3LO fit seems to have reduced tension between small x and high x.
- Reflected in fit qualities HERA improves by $\Delta\chi^2 =$ -68.4 at aN3LO.
- Effect of removing HERA from aN3LO vs NNLO is reduced for many high x datasets - reduced tension of HERA and high x in aN3LO fit.

Datasets	$N_{ m pts}$	$\Delta\chi^2$ no HERA vs full		Datasets	N.	$\Delta\chi^2$ no HERA vs full	
Datasets	/*pts	NNLO	aN3LO	Datasets	$N_{ m pts}$	NNLO	aN3LO
BCDMS $\mu p + d F_2$	314	-7.6	-1.4	CMS 8 TeV jets	174	-1.8	-11.5
NMC $\mu p + d F_2$	246	-20.6	-24.4	ATLAS 8 TeV Zp _T	104	-39.2	+12.8
DØ W asymmetry	14	-0.8	-2.0	ATLAS 8 TeV W+jets	30	-1.7	-0.8
ATLAS 7 TeV jets	140	+6.5	+1.8	Top total	71	-4.4	+2.2
CMS 7 TeV jets	158	+3.8	+1.0	Total	3042	-61.6	-48.0

• Perform fits with small $x < 10^{-3}$ data removed:




- Small x removal has limited effects on central values at high x.
- Small x uncertainties increase as expected.

aN3LO at low x vs resummed:

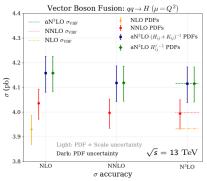
 We include LL low x resummed terms (and NLL with variable coefficient) in splitting functions - compare with resummed results³³:

- Similar effects qualitatively (note scheme difference!) on P_{ij} s.
- Impact on gluon also shows similarities qualitatively to 34:

• In MSHT20aN3LO have $\Delta\chi^2=-91$ for DIS data from NNLO, with -68 in HERA, cf ~-70 in both ³⁴ and xFitter small x resummed study³⁵.

Impact on Higgs cross-sections - ggF:

 More information on impact of aN3LO PDFs on N3LO ggF Higgs production:


σ order	PDF order	$\sigma + \Delta \sigma_+ - \Delta \sigma \text{ (pb)}$	σ (pb) + $\Delta \sigma_+ - \Delta \sigma$ (%)				
	PDF uncertainties						
	aN ³ LO (no theory unc.)	45.296 + 0.723 - 0.545	45.296 + 1.60% - 1.22%				
N^3LO	$aN^3LO\left(H_{ij}+K_{ij}\right)$	45.296 + 0.832 - 0.755	45.296 + 1.84% - 1.67%				
N LO	$aN^3LO(H'_{ij})$	45.296 + 0.821 - 0.761	45.296 + 1.81% - 1.68%				
	NNLO	47.817 + 0.558 - 0.581	47.817 + 1.17% - 1.22%				
NNLO	NNLO	46.206 + 0.541 - 0.564	46.206 + 1.17% - 1.22%				
PDF + Scale uncertainties							
	aN ³ LO (no theory unc.)	45.296 + 0.723 - 1.851	45.296 + 1.60% - 4.09%				
N^3LO	$aN^3LO (H_{ij} + K_{ij})$	45.296 + 0.832 - 1.923	45.296 + 1.84% - 4.25%				
N LO	$aN^3LO(H'_{ij})$	45.296 + 0.821 - 1.926	45.296 + 1.81% - 4.25%				
	NNLO	47.817 + 0.577 - 2.210	47.817 + 1.21% - 4.62%				
NNLO	NNLO	46.206 + 4.284 - 5.414	46.206 + 9.27% - 11.72%				

Gluon fusion cross-section and uncertainties at $\mu=m_H/2$ at $\sqrt{s}=13~{\rm TeV}.$

- PDF uncertainty increase from NNLO to aN3LO \Rightarrow inclusion of MHOs.
- Scale dependence reduced at N3LO. Central values for both scale choices $\mu = m_H/2 (\text{shown})$ and $\mu = m_H (\text{not shown})$ lie within each others' errorbands.

Impact on Higgs cross-sections - VBF:

 Consider impact of our aN3LO PDFs on known N3LO Higgs production in vector boson fusion²⁶:

N.B. For scale variations - do μ_R and μ_F at NNLO but only μ_R at aN3LO as PDF uncertainty from MHOs already in PDF eigenvectors.

Results obtained using proVBFH $code^{26,37}$.

- Increase in σ using aN3LO PDFs, occurs due to enhanced charm and light quarks at high x.
- VBF more reliant on quark sector changes less (\sim 2.5%, cf \sim 5% for ggF) with PDF order as more data constraints on quarks.

Impact on Higgs cross-sections - VBF:

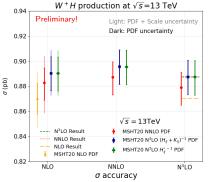
More information on impact of aN3LO PDFs on N3LO VBF Higgs:

$\frac{\sigma \text{ order}}{\sigma} = \frac{\text{PDF order}}{\text{PDF order}} = \frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\text{pb})}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\%)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\text{pb})}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\%)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{+}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}{\sigma + \Delta \sigma_{-}(\pi)}$ $\frac{\sigma + \Delta \sigma_{+} - \Delta \sigma_{+}(\pi)}{\sigma + \Delta \sigma_{-$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ order	PDF order	$\sigma + \Delta \sigma_{+} - \Delta \sigma_{-}$ (pb)	σ (pb) + $\Delta \sigma_+ - \Delta \sigma$ (%)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			PDF uncertainties				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.1150 + 0.0638 - 0.0724	4.1150 + 1.55% - 1.76%			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N3T O		4.1150 + 0.0682 - 0.0755	4.1150 + 1.66% - 1.83%			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IN LO	$aN^3LO(H'_{ij})$	4.1150 + 0.0678 - 0.0742	4.1150 + 1.65% - 1.80%			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		NNLO	3.9941 + 0.0558 - 0.0631	3.9941 + 1.40% - 1.58%			
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	NNLO	NNLO	3.9974 + 0.0557 - 0.0633	3.9974 + 1.39% - 1.58%			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PDF + Scale uncertainties						
			4.1150 + 0.0638 - 0.0724	4.1150 + 1.55% - 1.76%			
aN°LO (H'_{ij}) 4.1150 + 0.0678 - 0.0742 4.1150 + 1.65% - 1.80% NNLO 3.9941 + 0.0560 - 0.0631 3.9941 + 1.40% - 1.58%	N3I O		4.1150 + 0.0683 - 0.0755				
	N LO	$aN^3LO(H'_{ij})$	4.1150 + 0.0678 - 0.0742	4.1150 + 1.65% - 1.80%			
NNLO NNLO 3.9974 + 0.0576 - 0.0642 3.9974 + 1.44% - 1.61%		NNLO					
	NNLO	NNLO	3.9974 + 0.0576 - 0.0642	3.9974 + 1.44% - 1.61%			

Vector boson fusion cross-section and uncertainties at $\mu=Q^2$ at $\sqrt{s}=13~{\rm TeV}.$

σ order		$\sigma + \Delta \sigma_+ - \Delta \sigma$ (pb)	σ (pb) + $\Delta \sigma_+$ - $\Delta \sigma$ (%)
		4.1150 + 0.0683 - 0.0755	4.1150 + 1.66% - 1.83%
N^3LO	$aN^3LO n_f = 4$	4.0270 + 0.0685 - 0.0765	4.0270 + 1.70% - 1.90%
	$aN^3LO n_f = 3$	2.7248 + 0.0653 - 0.0673	2.7248 + 2.40% - 2.47%
	NNLO $n_f = 5$	3.9974 + 0.0557 - 0.0633	3.9974 + 1.39% - 1.58%
NNLO	NNLO $n_f = 4$	3.9118 + 0.0561 - 0.0634	3.9118 + 1.44% - 1.62%
	NNLO $n_f = 3$	2.6845 + 0.0539 - 0.0641	2.6845 + 2.01% - 2.39%

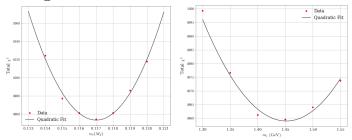
Vector boson fusion cross-section with increasing number of flavours at $\mu=Q^2$ at $\sqrt{s}=13~{\rm TeV}.$


- PDF uncertainty increase from NNLO to aN3LO less than in ggF case.
- Scale dependence negligible at NNLO and aN3LO.
- Comparing $n_f = 3,4$ see difference in NNLO and aN3LO predictions doubles once charm included.

Very preliminary!

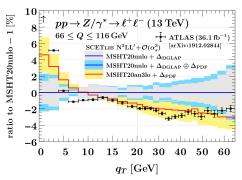
Produced (in past week) using the n3loxs code²⁷.

Impact on VH cross-sections:


• Consider impact of our aN3LO PDFs on VH associated production at LHC, e.g. W^+H at 13 TeV:

- Result with aN3LO PDFs raised slightly, reflects increased quarks at high x, antiquarks at low x and strange and charm.
- N3LO σ + aN3LO PDF result very close to NNLO σ + NNLO PDF result, increased stability in predictions.

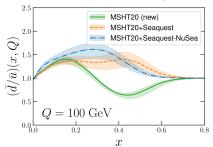
Strong Coupling and heavy quarks:


• Both $\alpha_S(m_Z^2)$ and m_c show quadratic behaviour around minima.

- aN3LO best fit: $\alpha_S(M_Z^2) = 0.1170$, overlaps with NNLO world average.
- NNLO best fit and uncertainty: $\alpha_S(M_Z^2) = 0.1174 \pm 0.0013$.
- ullet NLO best fit and uncertainty: $lpha_S(M_Z^2)=0.120\pm0.0015$. TC et al, 2106.10289.
- m_c best fit ~ 1.45 GeV, compare with ~ 1.35 GeV at NNLO, so now better agreement with world average $m_c = 1.5 \pm 0.2 {\rm GeV}$.
- Lower $\alpha_S(M_Z^2)$ and raised m_c suggest fit favouring slight suppression of gluon and charm.

aN3LO PDFs for Zp_T at low q_T :

MSHT20aN3L0 PDFs already starting to be used by theory community
 e.g. resummed (+ fixed order) predictions for Zp_T spectrum at low transverse momenta:



- aN3LO PDFs fit the measured ATLAS data better, likely due to indirect effects of gluon shape change....
- Credit: SCETlib, Johannes Michel LHC EW WG meeting Sep 2022.

New data - Seaquest

Preliminary!

- Seaquest (E906) fixed target DY data sensitivity to high x q, \bar{q} : $\Rightarrow \sigma_D/\sigma_H \sim 1 + \bar{d}/\bar{u}$. Direct measurement of \bar{d}/\bar{u} at high x.
- Various models for \bar{d}/\bar{u} at high x: Pauli blocking, pion cloud, etc.
- Previous questions of NuSea (E866) data preferring $\bar{d} < \bar{u}$ at $x \approx 0.4$.
- Clearly raises high $\times \bar{d}/\bar{u}$. Tension with NuSea which pulls it down.

Dataset	$N_{ m pts}$	MSHT20	New
Seaquest	6	-	8.2
NuSea	15	9.8	19.0
Total (without Seaquest or NuSea)	4348	5102.3	5112.1

• NuSea $\chi^2/N_{\rm pts}$: 0.65 ightarrow 1.27, when Seaquest added.

• Rest of data also worsens in χ^2 by 9 points, with 4.5 in E866 absolute DY (rather than ratio), 4.4 in NMC n/p, 4.3 in DØ W asymmetry.

MSHT PDF sets available

All available at https://www.hep.ucl.ac.uk/msht/, and most also on LHAPDF.

Overview of available MSHT20 PDF sets (this is a small selection!):

LHAPDF6 grid name	Order	n_f^{max}	N _{mem}	$\alpha_s(m_Z^2)$	Description
MSHT20nnlo_as118	NNLO	5	65	0.118	Default NNLO set
MSHT20nlo_as120	NNLO	5	65	0.118	Default NLO set
MSHT201o_as130	NNLO	5	65	0.118	Default LO set
MSHT20nnlo_as_largerange	NNLO	5	23	0.108-0.130	$\alpha_S(M_Z^2)$ variation NNLO set
MSHT20nlo_as_largerange	NLO	5	23	0.108-0.130	$\alpha_{\mathcal{S}}(M_{\mathcal{I}}^2)$ variation NLO set
MSHT20nnlo_mcrange_nf5	NNLO	5	9	0.118	Charm mass variation (1.2-1.6 GeV) NNLO set
MSHT20nnlo_mbrange_nf5	NNLO	5	7	0.118	Bottom mass variation (4.0-5.5 GeV) NNLO set
MSHT20nnlo_nf3,4	NNLO	3, 4	65	0.118	NNLO set with max. 3 or 4 flavours
MSHT20qed_nnlo	NNLO	5	77	0.118	NNLO set with QED effects and γ PDF
MSHT20qed_nnlo_(in)elastic	NNLO	5	77	0.118	NNLO set with QED effects and (in)elastic γ
MSHT20qed_nnlo_neutron	NNLO	5	77	0.118	NNLO neutron set with QED effects and γ
MSHT20an3lo_as118	aN3LO	5	105	0.118	Approximate N3LO set with theoretical uncertainties also included
MSHT20an3lo_as118_KCorr	aN3LO	5	105	0.118	Approximate N3LO set with theoretical uncertainties also included, K-factors correlated
PDF4LHC21	NNLO	5	901	0.118	Baseline PDF4LHC21 set
PDF4LHC21_mc	NNLO	5	101	0.118	Replica compressed PDF4LHC21 set
PDF4LHC21_40	NNLO	5	41	0.118	Hessian compressed PDF4LHC21 set

Key:

Selection of some of the MSHT PDF sets available in LHAPDF format. Many more online!

- Default - α_S , $m_{c,b}$ - QED - aN3LO - PDF4LHC21

Feel free to contact us with questions about usage.

Thomas Cridge MSHT20aN3LO Review