

HERAPDF2.0Jets and estimation of $\alpha_s(M_z)$ @ NNLO EPJ C 82, 243 (2022) arXiv:2112.01120

Jets produced @ DESY for over 40 years

 \rightarrow Possible simultaneous determination of parton densities and $\alpha_{s}({\rm M_{Z}})$

elweak coupling

 $\propto \alpha_S$

 $\propto \alpha_S$

e'

trijets

NNLO jets

2

O HERA

Why study jets @ HERA?

New NNLO calculations for HERA ep jet production available now

- Implemented in FastNLO and APPLEGRID \rightarrow fast cross section calculation possible EPJ C 82, 243 (2022) arXiv:2112.01120

\rightarrow Possible simultaneous determination of PDFs and $\alpha_s(M_z)$ at NNLO

motivation and impact at LHC

 αs is least known coupling constant;

needed to constrain GUT scenarios; cross section predictions, including Higgs;

. . .

Gluon-Fusion Higgs production, LHC 13 TeV

PDFs and/or **αs** limit: precision SM and Higgs measurements, BSM searches,

. . .

PDG21: αs = 0.1175 ± 0.0010 (w/o lattice)

• what is true α s central value and uncertainty?

new precise determinations have important role to play

$$\begin{aligned} & \text{HERAPDF2.0 parameterisation} \\ & xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}) \\ & xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ & xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}}x^{2}\right), \\ & xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ & x\overline{U}(x) = A_{\overline{U}}x^{B_{\overline{U}}}(1-x)^{C_{\overline{U}}}\left(1+D_{\overline{U}}x\right), \\ & x\overline{D}(x) = A_{\overline{D}}x^{B_{\overline{D}}}(1-x)^{C_{\overline{D}}}. \end{aligned}$$

- Additional constrains
 - $A_{u_v}, A_{d_v}, A_{g_{\pm}}$ constrained by the quark-number sum rules and momentum sum rule
 - $\bullet B_{\overline{U}} = B_{\overline{D}}$

•
$$x\overline{s} = f_s x\overline{D}$$
 at starting scale, $f_s = 0.4$

NNLO jets @ HERA

 $\overline{\mathbf{x}}$

Updates in the procedure

- scale choice changes:
- factorisation: µF²=(Q²+pt²)
- cf. µF²=Q² in previous NLO analysis; updated since not a good choice for low Q² jet data; change makes almost no difference for high Q² jets
- renormalisation: µR²=(Q²+pt²)
- cf. µR²=(Q²+pt²)/2 in previous NLO analysis
- NNLO fit with $\mu R^2 = (Q^2 + pt^2)$ gives $\Delta X^2 = -15$ cf. $\mu R^2 = (Q^2 + pt^2)/2$ and vice versa for NLO fit
- scale uncertainties treated as completely correlated between bins and datasets

† pt denotes ptiet in the case of inclusive jet cross sections and <pt> for dijets

- improved treatment of hadronisation uncertainties; NOW included together with exp. systematics; treated as ¹/₂ correlated, ¹/₂ uncorrelated between bins and datasets
- (small) uncertainties on theory predictions included

Estimation of charm & beauty masses

• new HERA combined charm and beauty data: EPJ C78 (2018), 473 \rightarrow updated estimation of $\rm M_{c}$ and $\rm M_{b}$

 \rightarrow Heavy Quark (HQ) coefficient functions evaluated using Thorne-Roberts Optimised Variable Flavour Number Scheme

 $\overline{\mathbf{x}}$

Wichmann

(

REF22

NNLO jets

(

HERA

HERA jet data used in PDF fit

- Inclusive jets and dijets icluded
- Trijets from HERAPDF2Jets NLO excluded \rightarrow no NNLO predictions
- H1 low Q² data added particularly sensitive to $\alpha_s(M_z)$
- Some data points excluded due theory limitations
 - Data at low scale μ = (pt_2+Q_2) < 10 GeV \rightarrow scale variations are large (~25% NLO and ~10% NNLO)
 - 6 ZEUS Dijet data points at low ptfor which predictions are not truly NNLO

Data set	taken	Q^2 [GeV	√ ²] range	L	e^+/e^-	\sqrt{s}	Norma-	All	Used
	from to	from	to	pb^{-1}		GeV	lised	points	points
H1 HERA I normalised jets	1999 - 2000	150	15000	65.4	e^+p	319	yes	24	24
H1 HERA I jets at low Q^2	1999 - 2000	5	100	43.5	e^+p	319	no	28	20
H1 normalised inclusive jets at high Q^2	2003 - 2007	150	15000	351	$e^+ p/e^- p$	319	yes	30	30
H1 normalised dijets at high Q^2	2003 - 2007	150	15000	351	$e^+ p/e^- p$	319	yes	24	24
H1 normalised inclusive jets at low Q^2	2005 - 2007	5.5	80	290	e^+p/e^-p	319	yes	48	37
H1 normalised dijets at low Q^2	2005 - 2007	5.5	80	290	$e^+ p/e^- p$	319	yes	48	37
ZEUS inclusive jets	1996 – 1997	125	10000	38.6	e ⁺ p	301	no	30	30
ZEUS dijets 1998 –2000 &	2004 - 2007	125	20000	374	$e^+ p/e^- p$	318	no	22	16

- Possibilities for PDF fit with jet data
 - With fixed $\alpha_s(M_z)$
 - With free $\alpha_s(M_z)$ or doing $\alpha_s(M_z)$ scan $\rightarrow \alpha_s(M_z)$ value

NNLO jets

@ HERA

DESY.

- $\alpha_s(M_z)$ determined with experimental, model, param. and hadr. uncertainties
- In fits with free $\alpha_s(M_z)$ scale uncertainty important \rightarrow calculated as 100% correlated between bins and data sets

 \pm 0.0029 (scale)

Wichmann

(

REF22

NNLO jets

(

HERA

Checking robustness of results

• HERA data at low x and Q^2 may be subject to need for ln(1/x) resummation or higher twist effects (eg arXiv:1506.06042, 1710.05935)

- Alternative parameterisations checked
 - No negative gluon term and no NG but additional Dg parameter
 - \rightarrow both give the same result
 - \rightarrow consistent with nominal

 $\alpha_s(M_Z^2) = 0.1151 \pm 0.0010 \text{ (exp)}$

Wichmann

(?)

REF22

Completing NLO picture

- Similar behavior and level of precision at NLO and NNLO
- However direct comparison of 2015 and 2022 results not possible \rightarrow different scale choice and slightly different jet data sets
- After unifying (details in backup)

 $\alpha s(MZ) = 0.1186 \pm 0.0014 \text{ (exp) NLO}$ $\alpha s(MZ) = 0.1144 \pm 0.0013 \text{ (exp) NNLO}$

Comparison to other HERAPDF2.0 fits

- For previous NLO results scale uncertainty applied as 50% correlated and 50% uncorrelated between bins and data sets (due to inclusion of HQ and trijet data)
- Using the precious procedure at NNLO:

NNLO

 $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011 \text{ (exp)} + 0.0001 \text{ (model + parameterisation)}$

 ± 0.0022

HERAPDF2.0Jets NLO

 $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009(\exp) \pm 0.0005(\text{model/parameterisation}) \pm 0.0012(\text{hadronisation}) \frac{+0.0037}{-0.0030}(\text{scale})$.

Scale uncertainties reduced \rightarrow as expected for NNLO calculations

comparison to other HERA DIS results

1. H1 NNLO jet study using fixed PDFs, includes H1 inclusive-jet and di-jet:

H1 jets $\mu > 2m_b$ 0.1170 (9)_{exp} (7)_{had} (5)_{PDF} (4)_{PDF α_s} (2)_{PDFset} (38)_{scale}

with similar breakup of uncertainties and similar μ , new HERA result:

 $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011(\exp+had+PDF) + 0.0001 \pmod{4} \pmod{4} + \text{parameterisation} \pm 0.0029 \pmod{4}$

H1 also provided a PDF+ α s fit to H1 inclusive and jet data analysis required Q² > 10GeV²; NEW HERA result re-evaluated with this cut (rather than >3.5GeV²), is: $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011 \text{ (exp)} \pm 0.0002 \text{ (model + parameterisation)} \pm 0.0021 \text{ (scale)}$

2. <u>NNLOJet+APPLfast</u> using fixed PDFs, includes H1+ZEUS inclusive-jet:

HERA inclusive jets $\mu > 2m_b$ 0.1171 (9)_{exp} (5)_{had} (4)_{PDF} (3)_{PDF α_s} (2)_{PDFset} (33)_{scale}

C. Gwenlan @ Moriond22 | 13

Fit with fixed $\alpha_s = 0.1155$

- Parametrisation uncertainties
 largest deviation
- 🔶 Model uncertainties
 - all variations added in quadrature

Experimental uncertainties:

- Hessian method
- Conventional $\Delta\chi^2$ = 1 \rightarrow 68% CL

Para	ameter	Central value	Downwards variation	Upwards variation
$Q^2_{\rm min}$	[GeV ²]	3.5	2.5	5.0
f_s		0.4	0.3	0.5
M_c	[GeV]	1.41	1.37*	1.45
M_b	[GeV]	4.20	4.10	4.30
μ_{f0}^2	[GeV ²]	1.9	1.6	2.2*

Adding D and E parameters to each PDF

IER A

Fit with fixed $\alpha_s = 0.118$ How does it compare to HERAPDF2.0? Well!

... and how it compares to $\alpha_s = 0.1155$ H1 and ZEUS

K. Wichmann **(** REF22

NNLO jets @ HERA

 $\overline{\mathbf{x}}$

Wichmann @

Message to take away

• HERAPDF2.0 family completed

 \rightarrow NNLO fit including jet data performed

Two new PDF sets

 \rightarrow HERAPDF2.0Jets NNLO $\alpha_{s}^{}(\text{M}_{z})$ = 0.118 \rightarrow PDG

 \rightarrow HERAPDF2.0Jets NNLO $\alpha_{\rm s}({\rm M_Z})$ = 0.1155 \rightarrow value favored by our fit

- Jet data allow us to constrain $\alpha_{\rm s}({\rm M_Z})$

 $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011 \text{ (exp)} + 0.0001 \text{ (model + parameterisation} \pm 0.0029 \text{ (scale)}$

• Comparing to NLO at the same footing NNLO $\alpha_s(M_Z^2) = 0.1156 \pm 0.0011 \text{ (exp)} +0.0001 \text{ (model + parameterisation)}$ ± 0.0022 NLO $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009(\text{exp}) \pm 0.0005(\text{model/parameterisation})$

 ± 0.0012 (hadronisation) $\frac{+0.0037}{-0.0030}$ (scale)

Systematic shift downwards at NNLO and reduction of scale uncertainty

Additional slides

... and how it compares to $\alpha_s = 0.1155$ H1 and ZEUS

 $\alpha_{s}(M_{z}) = 0.1156 \pm 0.0011(exp) + 0.0001_{-0.0002}(model+parametrisation \pm 0.0022(scale))$

where "exp" denotes the experimental uncertainty which is taken as the fit uncertainty, including the contribution from hadronisation uncertainties.

Maybe compared with the NLO result

 $\alpha_{s}(M_{z}) = 0.1183 \pm 0.0008(exp)\pm 0.0012(had)^{+0.0003}(mod/param)^{+0.0037}(scale)$

• the choice of scale was different;

BUT

- the NLO result did not include the recently published H1 low-Q² inclusive and dijet data [28];
- the NLO result did not include the newly published low p_T points from the H1 high- Q^2 inclusive data;
- the NNLO result does not include trijet data;
- the NNLO result does not include the low p_T points from the ZEUS dijet data;
- the NNLO analysis imposes a stronger kinematic cut $\mu > 10 \text{ GeV}$
- the treatment of hadronisation uncertainty differs.

All these changes with respect to the NLO analysis had to be made to create a consistent environment for a fit at NNLO. at the same time, an NLO fit cannot be done under exactly the same conditions as the NNLO fit since the H1 low Q^2 data cannot be well fitted at NLO. However, an NLO and an NNLO fit can be done under the common conditions:

An NLO and an NNLO fit can be done under the common conditions:

- choice of scale, $\mu_f^2 = \mu_r^2 = Q^2 + p_T^2$;
- exclusion of the H1 low- Q^2 inclusive and dijet data;
- exclusion of the low- p_T points from the H1 high- Q^2 inclusive jet data;
- exclusion of trijet data;
- exclusion of low- p_T points from the ZEUS dijet data;
- exclusion of data with $\mu < 10 \text{ GeV}$
- hadronisation uncertainties treated as correlated systematic uncertainties as done in the NNLO analysis.

The values of $\alpha_{\rm S}(M_Z)$ obtained for these conditions are: 0.1186 ± 0.0014(exp) NLO and 0.1144 ± 0.0013(exp) NNLO. The change of the NNLO value from the preferred value of 0.1156 is mostly due to the exclusion of the H1 lowQ² data and the low-p_T points at high Q²

What do we mean when we say the H1 low Q² jets cannot be well fitted at NLO? Simply this, that at NNLO the increase in overall $\chi 2$ of the fit when the 74 data pts of these data are added is ~80 (exact value depends on $\alpha_S(M_Z)$ and on scale choice) Whereas at NLO the increase in overall $\chi 2$ of the fit when the 74 data pts of these data are added is ~180.

(from A. Cooper-Sarkar, alpha-s 2022 workshop)

~ ~

23

 $5000 < Q^2 < 15000 \text{ GeV}^2$

30 <p_{T}>_2 / GeV

10

.....

NNLO(0.118)/NNLO(0.1155)

0.8 0.6

b)

 $700 < Q^2 < 5000 \text{ GeV}^2$

30

10

K. Wichmann @ REF22

DESY.

28

Uncertainties

- Reduction of low-x gluon
 (x < 10⁻3) uncertainties
 due to reduced
 model/param uncertainties
 in variations of M_c and μ_f²
- Reduction of high-x gluon (x > 10⁻³) uncertainties due to reduced model/param/exp uncertainties
- The same for other scales

H1 and ZEUS

37

HERA combined inclusive DIS

DESY.

<u>HERA combined DIS data are</u> <u>core of every modern PDF</u> <u>extraction</u>

- 2927 data points combined to 1307
- impressive precision

HERAPDF approach uses ONLY HERA data in global QCD fit

