

Measurement of mass dependence of the transverse momentum of Drell Yan lepton pairs

Jelena Mijušković on behalf of the CMS collaboration

Resummation, Evolution, Factorisation 2022 November 2022

CMS-SMP-20-003

Introduction and motivation

- Measurements of the DY process in hadron collision insight into the partonic structure and evolution of PDFs
- The transverse momentum of the Z boson understanding of the production of heavy states:
 - ⇒ **Low** p_T requires soft gluon resummation; sensitive to intrinsic p_T of colliding partons: transverse-momentum-dependent (TMD) PDF
 - \Rightarrow High p_T : dominated by fixed order perturbative QCD

Differential cross sections in the dilepton transverse momentum $p_T(ll)$, and in the lepton angular variable φ^* are measured for different values of the dilepton mass, m_{ll} (50 GeV - 1 TeV)

Analysis overview

- Measuring the $p_T(ll)$ spectrum in a wide m_{ll} range tests the validity of the resummation approach and the precision of different predictions
- The kinematic quantity φ^* , derived from these lepton angles, is measured
- The DY process in the presence of one jet is a complementary way to investigate the initial-state QCD radiations

- $p_T(ll)$ and φ^* are measured in five invariant mass bins
 - $p_T(ll)$ for ≥ 1 jet in the lower four bins
- Cross section ratio to the one at Z peak
 - reduced uncertainty
 - probes of evolution between different scales

Background estimation

Monte-Carlo based:

- tt and single top
 - → contribute at high mass
 - \rightarrow reduced by the **b veto**
- γγ → I⁺I[−] (in-in, in-el, el-el)
 → significant at very low p_τ
 - $Z/\gamma^* \rightarrow \tau^+ \tau^ \rightarrow$ dominant at **low mass**
- Dibosons (VV)
 → WW, ZW, ZZ

Data-driven:

- Misidentified electrons
 - \rightarrow Estimation based on e^+e^+ and e^-e^- events

Good description of the data is obtained

Systematic uncertainty

• In inclusive case - total uncertainty at the level of 1.5-2% around Z peak

- → Luminosity uncertainty is dominant, follow by the efficiency
- \rightarrow Unfolding statistic is dominant in high p_T region

- In DY+≥1 jets total uncertainty is ~10% level
 - → dominant uncertainty from jet energy scale correction

Theoretical predictions

MADGRAPH_aMC@NLO FxFx

- Interfaced with PYTHIA8 using the CUETP8M1 Tune
- Matrix element at NLO for up to 2 partons
- NNPDF3.0 NLO PDF

MiNNLO

- PYTHIA8 for the parton showers based on the CP5 tune
- Matrix element at NNLO
- NNPDF3.1 NNLO PDF
- Sudakov form factors are used to interpolate between the scale

CASCADE

- Parton Branching TMD
- PYTHIA6
- Z+0j or Z+1j at NLO

ARTEMIDE

- Analytical prediction
- N³LL + NNLO TMD
- QED FSR based on PYTHIA8

GENEVA T

- higher-order resummation with a DY calculation at NNLO
- 0-jettiness variable T_0 resumation NNLL' T + NNLO
- PYTHIA8 parton shower, tune CUETP8M1
- PDF4LHC15 NNLO

GENEVA q_{T}

- q_{τ} resummation at N³LL in the Radish formalism + NNLO
- PYTHIA8 parton shower, tune CUETP8M1
- PDF4LHC15 NNLO

• Different level of agreement for different theoretical predictions

13

Ratio of cross section to Z peak

- > Increase of m_{ll} results in a broader distribution for $p_T(ll)$ values above the peak
- > The rising ratio for the lowest m_{ll} range up to a $p_T(ll)$ value of 20 GeV is due to QED radiative effects on the final-state leptons

p_T results DY+≥1 jets

- > The peak is shifted towards larger $p_T(ll)$ values corresponding to the jet selection threshold (30 GeV here) regardless of the m_{ll}
- > The distributions become broader for $p_T(ll)$ values larger than the peak for increasing m_{ll}

17

18

results

Summary

- The differential cross section of the dilepton p_T from the Drell-Yan process has been measured in a wide mass range
 - additional measurements for φ^* , DY+>1 jets events, and the ratio to Z peak results
- Comparisons of the measurements to six predictions using different treatments of soft initial-state QCD radiations performed

- The measurements of Drell–Yan cross section in a wide range in dilepton masses allows to probe the interplay between the transverse momentum and the mass scales of the process
- Theoretical predictions individually describe the measurements well in the regions they were designed for
 - \rightarrow No model is able to reproduce all dependencies over the complete covered range