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Motivation

1. NLO corrections to the BFKL/BK/JIMWLK kernel and
Impact-factors as well as many NLO corrections in CGC/Saturation
studies contain double logs o In?(;?/q%) for u® > q%. All-order
structure of these very large (qr is often integrated down to zero!)
corrections remains unknown despite vast body of literature devoted to
this problem.

2. In several recent studies [Miiller et.al. 13’; M.N. 20°; Hentschinski et.al. 21°; Taels et.al.
22 ] these “Sudakov” terms where found with different coefficients
and even signs! The coefficient of this term strongly depends on the
procedure of “double-counting subtraction” between evolution and
NLO correction. It means, that just adding Sudakov formfactor on top
of small-x UPDF could not be always correct.

3. In TMD factorization the resummation of Sudakov logs is based on the
structure of rapidity divergences in TMDs and soft-factors. In
Lipatov’s EFT, the BFKL kernel is also a coefficient of the
rapidity-divergence in 4-Reggeon Green’s function. Are these RDs the
same or different? Is there an overlap and could it be exploited?
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Standard HEF — resummation of In1/z

The setup of standard High-Energy Factorization [coliins, Ellis, 91°; Catani,
. — + .
Ciafaloni, Hautmann, 917,94] in the LLA (3" aZIn" ' 1 2 = %) and in the LP
s 2 »
n
w.r.t. z, treatment like in [Kirschner, Segond, 10°]:

I
@:— =t <. <k <ki<pt
I Tar
I,w P
G(q%|Y:ln%,k2T) I,.wmm k;r <<k;r

kEf < pt

Notice, that k™-conservation is taken care of by the MRK!
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Reminder: Building blocks of BFKL Green’s function
For the squared amplitude:
» Real emisssion — squared Lipatov’s vertex:

kri, ys 2¢
. (2 .
————— g'———— =a (27) Pkridyi, ay; = —Z dzl-(iJr : )

s =
ay — — zjq4 ﬂk% 2 (1 = 24) 2 1=z

1
where | &s = asCa/m

» Virtual corrections — Regge factors:

CCFM kernel

where wy (pQT) — one-loop gluon Regge trajectory:

dsJ[(F-QEkT P}
4 J w(2m)=2 k2.(pr — kr)?

_(Am) T (1 + T2 (1 —¢)
I'(1— 2e)

= 2 (in DR)

2
= —a&sln I;\% (for k2, > A2 regularization)
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New setup: resummation of rapidity logs
The same tools should allow the resummation of corrections enhanced by

difference in physical rapidity (y = %ln Z—f) between rebounded gluon
and the hard process (like with Miiller-Navelet dijets, also motivated by studies

k
of [Balitsky, Tarasov, 15'; Balitsky, Chirilli 20°]): ¥ = Yo — Yj,; = In \1;:;| i.
Two possible
|

solutions:
=z + = eyﬂl . .
9+ p H1 » Kinematic

' Tar constraint (yet
[ eI unexplored...):
[}
Glar|Y k7, ?) § Pemmmms ki, ks, y2 > ... > Y, ki > ki
1
[ Lo kL k3 LY,
|tk 1XrL Y > e > > Y » or just restore
T

| k-
0 00 conservation?

pt — kT, —kry>yi S>> ... > Y,
Problem in the DGLAP region: if kp-ordering
ki < ki K kiy < ... < pif,

happens to be “stronger” than y-ordering y > y1 > y2 > ... > Y),,, then it is
possible that:

[krle? < [kpile¥t < ... < me¥m = kT <k <k <. < ¢,
and the MRK treatment of kt-conservation breaks-down. 5 / 13



Resummation factor

Collinearly un-subtracted resummation factor:
5. 2 . 2kT 2
C(Z7qT7ul = Qs QT7Z])+‘ y_Y}LlakT7p+ - k+)7

where y and kr — rapidity and transverse momentum of the rebounded
gluon, kT = |kr|e¥, G — (modified) BFKL Green’s function with

longitudinal-momentum dependence.

The k*-conservation §-function can be factorised using Fourier transform in

T

5 (py — ks — KF -k 2ps) / dx oir— (P (1=2)—ky) Heﬂtm,kj’

where k' = |kr;|e¥i. So we introduce: G(qQT‘ Y, pQT,x,)
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Evolution for modified BFKL Green’s function

8G(q2T| Y, p%ﬁx*)
Y

with

= Qs \/d272€kT K(k%,p%,m,,Y)G(q%’ Y, (pT—kT)27$*)a

()~ (4m)T(1 +T*(1 = ) , explia-[krle”]

K(K2 b2 o V) = §229 ()
( T,PT,T—, ) 0 ( T) F(1—26) 71'(271’)7251(%-'

Asymptotic solution for z— > |qr|™" ., 21

Glasy. (q%l Y, pQT,m-) = 8(ar — p3) (aFa) " exp [~a,Y (2vp +im) —a.Y?],

in the previous work only the effects of the highlighted term where studied.
Note that:

— —2645Y
G(q%’ Y,pr, x> |ar| 1) ~ (Jar|z-) 2.

The “heavy” soft-gluon tail of the shockwave? Doesn’t look like a boosted distribution

x 27Y — x .
fla— )y 8
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(Preliminary) Monte-Carlo results for G
The LL BFKL equation can be solved using efficient Monte-Carlo algorithm [c.
Schmidt, 96| (also implemented in the BFKLex MC [G. Chachamis et.al.]) which gives (y;, kr;) for
all emissions with |kp;| > X, then the modified Green’s function can be calculated

as:
2 2 . vi
— — . k2
G(qT Y, pr,x— ) = exp [—iz_ |kp;|e¥i]
emissions events
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(Preliminary) Monte-Carlo results for G
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Two-component picture of the shock-wave emerges:

» The quasi-classical component, which is “narrow” in z_ and
Lorentz-contracts as e~>

» The soft-gluon component, has “heavy” power-law tail in z_ and
shrinks with increasing Y differently
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From Gagy. to C
Substituting Gasy. into:

oo Jor ]

with k* = zp*|kr|e¥ /u1, we obtain:

+oo +d
/ p T — eim, (p+(1_z)_k+)G<q%w
2

—00

5 Qs r p+(1—2) ey Y2-_2ygasY lar| 2z v
C ~ . /dY ( ) 67(15 —EYEAs f (1 _ e ,@SY) 5
ar(l—z) ) lar| pr 1—=z

where
+ood 71+2a0( )
_ i —2a _i(kz—Ta) _ K K
f(K’7a) - / 27_{_:1: € F(2a) ’

so finally we obtain a resummation factor depending on two scales:

Y1
~ — €
C~

Y,yl)71+2645Y

s ) /dY exp [—as (Y? = 2Y(Y2 — vp))] g

az(1—2 '(24:Y)

0

)

with Y1 =In ( £1 172) and Y = ln< 12 172) where p2 = q+.

lar| = lar| =
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Region of applicability

The obtained solution for C is applicable only if the integral over z_ is
dominated by |gr|z— > 1 tail of the Green’s function:
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From the derivation, this is true if at least p4+(1 — 2)/|qr| < 1, ie.
asYs < 1 still.

The hierarchy
1—2

q+ S lar| < p,

can be realised e.g. in production of heavy particle (e.g. Higgs, pseudoscalar
quarkonium) in the direction of the projectile.
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Two-scale exponent

} & Yy , (Ifr\’yl) 14265
o2 [ayexp[—a. (Y2—2V (Vs — ,
q%(l—z)/ exp [~ 0% =7e))] [(24,Y)

0

In the limit a,Y1 < 1, asY:2 ~ 1 the singularity at Y = Y3 can be replaced
by 6(Y — Y1) and the integral can be calculated to be:

C x exp {f&s <1112 P o HL (ln R “/E>)}.
lar| lar| lar|

Let’s compare the scale-dependent exponent with the solution of CSS
equations for I'c(p) = const.:

exp [T In® (ulxzr) = 20 In(v/Clxr ) In(ulxr ) = v In(ulxr))]
which leads to identification:

1 — b, p2 —> \[C and ['c = —as,

the negative cusp anomalous dimension is weird...

Notation from [Vladimirov, Scimemi, 18°]:

In F(x, s M = s 5 In F(x, s =-D , s

Fr n F(z, xp, p, V<) = v (1, V<) T VT n F(z, xq, t, /<) s Ixp])
¢ (V<) = ‘< p (s |x|) = Te(p)
din e FH T T Qg FUe D= Teli)
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Conclusions and outlook

» Resummation factor depending on two scales arises from the
asymptotic solution for z_ — oo, some analogy with solution of CSS
equation can be made

» However the region of applicability of asymptotic solution is very
narrow (not applicable at z < 1!), better understanding of
x_-dependence is needed

» Two-component picture of the shockwave produced by the energetic
parton is emerging from the model, with “quasi-classical” component
which Lorentz-contracts with increasing Y and “soft-gluon” component
which shrinks significantly slower

Thank you for your attention!
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Digression: Regge trajectory and RDs

Due to the presence of the 1/ g*-factors in the induced vertices, loop
integrals in Lipatov’s High-energy EFT contain the light-cone (Rapidity)
divergences:

P+

oo - (p3(nyn-))”
Moy _N% _gscAéab/( P ¢2(p— q)?qTq

The regularization by explicit cutoff in rapidity was proposed by Lipatov

[Lipatov, 1995] (¢& = /¢ + aZe™¥, p* =p~ = 0):

2
dgtdq™ */d dq?
e pr
qrtq q° +ar

Y1

then

CAgQ, P dD_ZqT .
% ~ §.p2 x : T X (y2 — y1) + finite terms
ab "2 ) ad(pr —ar)?

Wg(P%")
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