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Motivation

1. NLO corrections to the BFKL/BK/JIMWLK kernel and
Impact-factors as well as many NLO corrections in CGC/Saturation
studies contain double logs αs ln

2(µ2/q2
T ) for µ2 ≫ q2

T . All-order
structure of these very large (qT is often integrated down to zero!)
corrections remains unknown despite vast body of literature devoted to
this problem.

2. In several recent studies [Müller et.al. 13’; M.N. 20’; Hentschinski et.al. 21’; Taels et.al.

22 ] these “Sudakov” terms where found with different coefficients

and even signs! The coefficient of this term strongly depends on the
procedure of “double-counting subtraction” between evolution and
NLO correction. It means, that just adding Sudakov formfactor on top
of small-x UPDF could not be always correct.

3. In TMD factorization the resummation of Sudakov logs is based on the
structure of rapidity divergences in TMDs and soft-factors. In
Lipatov’s EFT, the BFKL kernel is also a coefficient of the
rapidity-divergence in 4-Reggeon Green’s function. Are these RDs the
same or different? Is there an overlap and could it be exploited?
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Standard HEF – resummation of ln 1/z

The setup of standard High-Energy Factorization [Collins, Ellis, 91’; Catani,

Ciafaloni, Hautmann, 91’,94’] in the LLA (
∑

n

αn
s lnn−1 1

z
, z = q+

p+
) and in the LP

w.r.t. z, treatment like in [Kirschner, Segond, 10’]:

G(q2
T |Y = ln 1

z
,k2

T )







p+ →

↑ qT

↑ kT

≃ p+,−kT →

q+ = zp+ ≪ . . . ≪ k+
2 ≪ k+

1 ≪ p+

. . .

k+
2 ≪ k+

1

k+
1 ≪ p+

Notice, that k+-conservation is taken care of by the MRK!
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Reminder: Building blocks of BFKL Green’s function
For the squared amplitude:

◮ Real emisssion – squared Lipatov’s vertex:

q+ →

kTi, yi

→ ziq+

= α̂s
(2π)2ǫ

πk2
Ti

d2kTidyi, dyi =
dzi

zi(1 − zi)
= dzi

(
1

zi

+
1

1 − zi

)

︸ ︷︷ ︸

CCFM kernel

where α̂s = αsCA/π

◮ Virtual corrections – Regge factors:

∑

︸ ︷︷ ︸
Y

Y ≫1, 8a
−−−−−−→ ∝ exp

[
2ωg(p

2
T )Y

]
,

where ωg(p
2
T ) – one-loop gluon Regge trajectory:

ωg(p
2
T ) = −

α̂s

4

∫

d2−2ǫkT

π(2π)−2ǫ

p2
T

k2
T (pT − kT )2

=
α̂s

2ǫ
(p2

T )−ǫ (4π)
ǫΓ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
(in DR)

= −α̂s ln
p2
T

λ2
(for k2

Ti > λ2 regularization)
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New setup: resummation of rapidity logs
The same tools should allow the resummation of corrections enhanced by

difference in physical rapidity (y = 1
2
ln k+

k− ) between rebounded gluon
and the hard process (like with Müller-Navelet dijets, also motivated by studies

of [Balitsky, Tarasov, 15’; Balitsky, Chirilli 20’]): Y = y0 − Yµ1 = ln µ1
|kT |

k+

q+
.

G(q2
T |Y ,k2

T , ?)







p+ →

↑ qT

↑ kT

→ k+,−kT , y ≫ y1 ≫ y2 ≫ . . . ≫ Yµ1

q+ = zp+ = µ1e
Yµ1

. . .

k+
2 ,k

2
T2, y2 ≫ . . . ≫ Yµ1

k+
1 ,k2

T1, y1 ≫ y2 ≫ . . . ≫ Yµ1

Two possible

solutions:

◮ Kinematic

constraint (yet
unexplored...):

k+
i−1 > k+

i ,

◮ or just restore

k+-

conservation?

Problem in the DGLAP region: if kT -ordering

k2
T ≪ k2

T1 ≪ k2
T2 ≪ . . . ≪ µ2

1,

happens to be “stronger” than y-ordering y ≫ y1 ≫ y2 ≫ . . . ≫ Yµ1 , then it is
possible that:

|kT |ey ≪ |kT1|e
y1 ≪ . . . ≪ µ1e

yµ1 ⇒ k+ ≪ k+1 ≪ k+2 ≪ . . . ≪ q+,

and the MRK treatment of k+-conservation breaks-down. 5 / 13



Resummation factor

Collinearly un-subtracted resummation factor:

C̃(z,q2
T , µ

2
1) = α̂s

+∞∫

Yµ1

dy

∫
d2kT

πk2
T

G
(

q
2
T , zp+

∣
∣
∣ y − Yµ1 ,k

2
T , p+ − k+

)

,

where y and kT – rapidity and transverse momentum of the rebounded

gluon, k+ = |kT |e
y, G – (modified) BFKL Green’s function with

longitudinal-momentum dependence.

The k+-conservation δ-function can be factorised using Fourier transform in
x−:

δ
(
p+ − k+ − k+

1 − . . .− k+
n − zp+

)
=

+∞∫

−∞

dx−

2π
eix−(p+(1−z)−k+)

n∏

i=1

e−ix−k+
i ,

where k+
i = |kTi|e

yi . So we introduce: G
(

q2
T

∣
∣
∣ Y,p2

T , x−

)
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Evolution for modified BFKL Green’s function

∂G
(

q2
T

∣
∣
∣ Y,p2

T , x−

)

∂Y
= α̂s

∫

d2−2ǫ
kT K(k2

T ,p
2
T , x−, Y )G

(

q
2
T

∣
∣
∣ Y, (pT−kT )

2, x−

)

,

with

K(k2
T ,p

2
T , x−, Y ) = δ(2−2ǫ)(kT )

(p2
T )

−ǫ

ǫ

(4π)ǫΓ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
+
exp[−ix−|kT |e

Y ]

π(2π)−2ǫk2
T

.

Asymptotic solution for x− ≫ |qT |
−1

[M.N., 21’]:

Gasy.

(

q
2
T

∣
∣
∣ Y,p

2
T , x−

)

= δ(q2
T − p

2
T )

(
q
2
Tx

2
−

)−α̂sY exp
[
−α̂sY (2γE + iπ)−α̂sY

2] ,

in the previous work only the effects of the highlighted term where studied.
Note that:

G
(

q
2
T

∣
∣
∣ Y,p

2
T , x− ≫ |qT |

−1
)

∼
(
|qT |x−

)−2α̂sY .

The “heavy” soft-gluon tail of the shockwave? Doesn’t look like a boosted distribution

f(x−e−Y ) −→
Y →∞

δ(x−).
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(Preliminary) Monte-Carlo results for G
The LL BFKL equation can be solved using efficient Monte-Carlo algorithm [C.

Schmidt, 96’] (also implemented in the BFKLex MC [G. Chachamis et.al.]) which gives (yi,kTi) for
all emissions with |kTi| > λ, then the modified Green’s function can be calculated
as:

G
(

q2
T

∣

∣

∣
Y,p2

T , x−

)

=

〈

∏

emissions

exp [−ix−|kTi|e
yi ]

〉

events
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(Preliminary) Monte-Carlo results for G
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Two-component picture of the shock-wave emerges:

◮ The quasi-classical component, which is “narrow” in x− and
Lorentz-contracts as e−Y

◮ The soft-gluon component, has “heavy” power-law tail in x− and
shrinks with increasing Y differently
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From Gasy. to C̃

Substituting Gasy. into:

C̃ = α̂s

∞∫

0

dY

∞∫

0

dk2
T

k2
T

+∞∫

−∞

p+dx−

2π
eix−

(
p+(1−z)−k+

)

G
(

q
2
T

∣
∣
∣ Y,k

2
T , x−

)

,

with k+ = zp+|kT |e
Y /µ1, we obtain:

C̃ ≃
α̂s

q2
T (1− z)

∞∫

0

dY

(
p+(1− z)

|qT |

)2α̂sY

e−α̂sY
2−2γE α̂sY f

(

1−
|qT |

µ1

z

1− z
eY , α̂sY

)

,

where

f(κ, α) =

+∞∫

−∞

dx

2π
x−2αei(κx−πα) =

κ−1+2αθ(κ)

Γ(2α)
,

so finally we obtain a resummation factor depending on two scales:

C̃ ≃
α̂s

q2
T (1− z)

Y1∫

0

dY exp
[
−α̂s

(
Y 2 − 2Y (Y2 − γE)

)]
(
1− eY −Y1

)−1+2α̂sY

Γ(2α̂sY )
,

with Y1 = ln
(

µ1
|qT |

1−z
z

)

and Y2 = ln
(

µ2
|qT |

1−z
z

)

where µ2 = q+.
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Region of applicability

The obtained solution for C̃ is applicable only if the integral over x− is
dominated by |qT |x− ≫ 1 tail of the Green’s function:
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From the derivation, this is true if at least p+(1− z)/|qT | . 1, i.e.
αsY2 ≪ 1 still.

The hierarchy

q+
1− z

z
. |qT | ≪ µ1,

can be realised e.g. in production of heavy particle (e.g. Higgs, pseudoscalar
quarkonium) in the direction of the projectile.
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Two-scale exponent

C̃ ≃
α̂s

q2
T (1− z)

Y1
∫

0

dY exp
[

−α̂s
(

Y 2 − 2Y (Y2 − γE)
)]

(

1− eY −Y1
)−1+2α̂sY

Γ(2α̂sY )
,

In the limit αsY1 ≪ 1, αsY
2
1 ∼ 1 the singularity at Y = Y1 can be replaced

by δ(Y − Y1) and the integral can be calculated to be:

C̃ ∝ exp

[

−α̂s

(

ln2 µ1

|qT |
− 2 ln

µ1

|qT |

(

ln
µ2

|qT |
− γE

))]

.

Let’s compare the scale-dependent exponent with the solution of CSS
equations for Γc(µ) = const.:

exp
[

Γc ln
2(µ|xT |)− 2Γc ln(

√

ζ|xT |) ln(µ|xT |)− γV ln(µ|xT |)
]

,

which leads to identification:

µ1 → µ, µ2 →
√

ζ and Γc = −α̂s,

the negative cusp anomalous dimension is weird...
Notation from [Vladimirov, Scimemi, 18’]:

d

d lnµ
lnF (x, xT , µ,

√
ζ) = γF (µ,

√
ζ),

d

d ln
√

ζ
lnF (x, xT , µ,

√
ζ) = −DF (µ, |xT |),

d

d ln
√

ζ
γF (µ,

√
ζ) = −

d

d lnµ
DF (µ, |xT |) = Γc(µ).
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Conclusions and outlook

◮ Resummation factor depending on two scales arises from the
asymptotic solution for x− → ∞, some analogy with solution of CSS
equation can be made

◮ However the region of applicability of asymptotic solution is very
narrow (not applicable at z ≪ 1!), better understanding of
x−-dependence is needed

◮ Two-component picture of the shockwave produced by the energetic
parton is emerging from the model, with “quasi-classical” component
which Lorentz-contracts with increasing Y and “soft-gluon” component
which shrinks significantly slower

Thank you for your attention!
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Digression: Regge trajectory and RDs
Due to the presence of the 1/q±-factors in the induced vertices, loop
integrals in Lipatov’s High-energy EFT contain the light-cone (Rapidity)
divergences:

Π
(1)
ab =

p ↓

q ↓

+

−

= g2sCAδab

∫
ddq

(2π)D

(
p2
T (n+n−)

)2

q2(p− q)2q+q−

The regularization by explicit cutoff in rapidity was proposed by Lipatov
[Lipatov, 1995] (q± =

√
q2 + q2

T e
±y, p+ = p− = 0):

∫
dq+dq−

q+q−
=

y2∫

y1

dy

∫
dq2

q2 + q2
T

,

then

Π
(1)
ab ∼ δabp

2
T ×

CAg
2
s

2(2π)3

∫
p2
T d

D−2qT

q2
T (pT − qT )2

︸ ︷︷ ︸

ωg(p
2
T
)

× (y2 − y1) + finite terms
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