
Resolving negative NLO cross sections problem in
quarkonium production via matching with

High-Energy Factorization 1

Jean-Philippe Lansberg2, Maxim Nefedov3, Melih Ozcelik4

REF-2022
November 2nd., 2022

This project is supported by the European Union’s Horizon 2020 research and innovation programme under Grant agreement no. 824093

1Based on JHEP 05 (2022) 083 and ongoing work
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Perturbative instability of quarkonium total cross sections
Inclusive ηc-hadroproduction (CSM):

p+p→ cc̄
[
1S

[1]
0

]

+X, LO: g(p1)+g(p2) → cc̄
[
1S

[1]
0

]

,

σ(
√
spp) = fi(x1, µF )⊗ fj(x2, µF )⊗ σ̂(z),

where z = M2

ŝ
with ŝ = (p1 + p2)

2.

Inclusive J/ψ-photoproduction (CSM):

γ+p→ cc̄
[
3S

[1]
1

]

+X, LO: γ(q)+g(p1) → cc̄
[
3S

[1]
1

]

+g,

σ(
√
sγp) = fi(x1, µF )⊗ σ̂(η),

where η = ŝ−M2

M2 with ŝ = (q + p1)
2.
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Scale-fixing solution

Studied in [Lansberg, Ozcelik, 20’], [Lansberg et.al, 21’]. For J/ψ photoproduction:

dσ
(LO+NLO)
γp

d lnµ2
F

∝
(αs

2π

)2
ηmax∫

0

dη

{

ln(1 + η)

[

c1(η → ∞) + c̄1(η → ∞) ln
M2

µ2
F

]

×
(

fg(xη, µ
2
F ) +

CF

CA

fq(xη, µ
2
F )

)

+ non-singular terms at η ≫ 1

}

“principle of minimal scale-sensitivity” ⇒ for
J/ψ photoproduction:

µ̂F =M exp

[
c̄1(η → ∞)

2c̄1(η → ∞)

]

≃ 0.87M,

for ηc-hadroproduction:

µ̂F =M exp

[
A1

2

]

=
M√
e
≃ 0.61M.
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The µ̂F -scale removes corrections ∝ αn
s lnn−1(1 + η) from σ̂i(η) and

resums them into PDFs. But is such resummation complete?
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High-Energy Factorization
The LLA (

∑

n

αn
s lnn−1(1 + η)) formalism is due to [Collins, Ellis, 91’; Catani,

Ciafaloni, Hautmann, 91’,94’]

Physical picture in the
LLA for photoproduction:

ŝ







p+1 →

q+1 ↑

k+3 ≪ k+2

k+2 ≪ k+1

→ k+1 ≃ p+1







H







C

Glauber exchanges(k+k− ≪ k
2
T

)

form the Reggeized gluon in the

t-channel.

σ̂HEF(η) ∝
1+η∫

0

dy

y

∞∫

0

dq2
T1C

(
y

1 + η
,q2

T1, µF , µR

)

×H(y,q2
T1)+NLLA +O(1/η).

◮ The resummation factor C is the solution of the
LL BFKL equation with collinear divergences
subtracted,

◮ The coefficient function H can be calculated at
LO[Kniehl, Vasin, Saleev, 06’] and NLO (needed for

NLLA),

◮ For consistency with fixed-order DGLAP
evolution the anomalous dimension γgg in C
should be truncated:

γgg(N,αs) =
α̂s

N
︸︷︷︸
DLA

+2ζ(3)
α̂4
s

N4
+ 2ζ(5)

α̂6
s

N6
+ . . .

︸ ︷︷ ︸
LLA

◮ Expansion of σ̂HEF(η) in αs correctly
reproduces σ̂NLO(η ≫ 1) and predicts the
σ̂NNLO(η ≫ 1). 4 / 11



LLA evolution w.r.t. ln 1/z

In the LL(ln 1/z)-approximation, the Y = ln 1/z-evolution equation for
collinearly un-subtracted C̃-factor has the form:

C̃(x,qT ) = δ(1− x)δ(q2
T ) + α̂s

1∫

x

dz

z

∫

d2−2ǫ
kTK(k2

T ,q
2
T )C̃

(x

z
,qT − kT

)

with α̂s = αsCA/π and

K(k2
T ,p2

T ) = δ(2−2ǫ)(kT )
(p2

T )−ǫ

ǫ

(4π)ǫΓ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
+

1

π(2π)−2ǫk2
T

.

It is convenient to go from (z,qT )-space to (N,xT )-space:

C̃(N,xT ) =

∫

d2−2ǫqT eixT qT

1
∫

0

dx xN−1
C̃(x,qT ),

because:

◮ Mellin convolutions over z turn into products:
∫

dz
z

→
1
N

◮ Large logs map to poles at N = 0: αk+1
s lnk

1

z
→

αk+1
s

Nk+1

◮ All collinear divergences are contained inside C in xT -space.
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Exact LL solution

In (N,qT )-space, subtracted C, which resums all terms ∝ (α̂s/N)n

(complete LLA) has the form:

C(N,qT , µF ) = R(γgg(N,αs))
γgg(N,αs)

q2
T

(
q2
T

µ2
F

)γgg(N,αs)

,

where γgg(N,αs) is the solution of [Jaroszewicz, 82’]:

α̂s

N
χ(γgg(N,αs)) = 1, with χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ),

where ψ(γ) = d ln Γ(γ)/dγ – Euler’s ψ-function. The first few terms:

γgg(N,αs) =
α̂s

N
︸︷︷︸
DLA

+2ζ(3)
α̂4
s

N4
+ 2ζ(5)

α̂6
s

N6
+ . . .

︸ ︷︷ ︸
LLA

The function R(γ) is

R(γgg(N,αs)) = 1 +O(α3
s).
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Matching with NLO
The HEF is valid in the leading-power in M2/ŝ, so for ŝ ∼M2 we match
it with NLO CF by the Inverse-Error Weighting Method [Echevarria et.al., 18’].

NLO

ηc-hadroproduction,
z =M2/ŝ:

J/ψ-photoproduction,
η = (ŝ−M2)/M2:

HEF
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Inverse Error Weighting (InEW) matching
Development of an idea from [Echevarria et al., 18’] :

σ̂(η) = wCF(η)σ̂CF(η) + (1− wCF(η))σ̂HEF(η),

the weights are determined through the estimates of “errors”:

wCF(η) =
∆σ̂−2

CF(η)

∆σ̂−2
CF(η) + ∆σ̂−2

HEF(η)
, wHEF(η) = 1− wCF(η).

◮ ∆σ̂CF(η) is due to missing higher orders and large logarithms, it can
be estimated from the αs expansion of σ̂HEF(η):

∆σ̂CF(η) = α̂2
s ln(1 + η)

(

f2 + f1 ln
M2

µ2
F

+ f̄1
2

ln2 M2

µ2
F

)

◮ ∆σ̂HEF(η) is due to missing power corrections in 1/η:
∆σ̂HEF(η) = Aη−αHEF . We determine A and αHEF from behaviour of
σ̂CF(η)− σ̂CF(∞) at η ≫ 1.
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Results for bottomonia

NLO:

NLO+HEF:
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Towards NLL: the “Monster logs” at small qT are not scary

σ̂HEF(η) ∝
1+η∫

0

dy

y

∞∫

0

dq2
T1C

(
y

1 + η
,q2

T1, µF , µR

)

H(y,q2
T1).

At NLO for H one typically encounters corrections ∝ αs ln
n M2

q
2
T

at

q2
T ≪M2 with n = 1, 2. Let’s study their effect in N -space (note that
γN = α̂s/N):

µ2
F∫

0

dq2
T CDLA(N,q

2
T , µ

2
F )× α̂s ln

n µ
2
F

q2
T

= α̂sγN

µ2
F∫

0

dq2
T

q2
T

(
q2
T

µ2
F

)γN

lnn µ
2
F

q2
T

= α̂s
(−1)nn!

γn
N

=

{

−N for n = 1
2N2

α̂s
for n = 2

−→
Mellin transform

{
−δ′(η) for n = 1
2
α̂s
δ′′(η) for n = 2

So these contributions do not belong to NLA in η = (ŝ−M2)/M2 ≫ 1 and
will be removed by the matching!
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Conclusions and outlook

◮ The perturbative instability of pT -integrated quarkonium production
cross sections at NLO comes from the region ŝ≫M2

◮ The problem can be solved via matching of NLO calculation at ŝ ∼M2

and LLA HEF calculation at ŝ≫M2

◮ The Inverse-Error Weighting(InEW) method is an efficient matching
prescription without free parameters. The uncertainties due to
matching are smaller than residual scale uncertainties

◮ The LLA HEF has to be truncated down to DLA for resummation
factors, to be consistent with NLO DGLAP evolution

◮ The inclusive ηc hadroproduction and J/ψ photoproduction have been
considered as examples

◮ Calculations for rapidity-dependent cross sections as well as
χc0,2-meson production cross sections are in progress

◮ The next-to-DLA calculation is needed to further reduce
scale-uncertainties. The logarithms lnM2/q2

T for q2
T ≪M2 in the

NLO HEF coefficient function (H) are not a problem for the matching
calculation!

Thank you for your attention!
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Backup: DGLAP Pgg at small z
Plot from hep-ph/1607.02153 with my curve (in red) for the strict LLA

γgg(N) = α̂s

N
+ 2ζ(3)

α̂4
s

N4 + 2ζ(5)
α̂6
s

N6 + . . .; LO:

Pgg(z) =
2CA

z
+ . . .⇔ γN = α̂s

N

The “LO+LL” and “NLO+NLL” curves represent a form of matching
between DGLAP and BFKL expansions, in a scheme by Altarelli, Ball and
Forte, more complicated than strict LL or NLL approximation. 12 / 11


	

