Searching for intrinsic charm with LHCb

Tom Boettcher

on behalf of the LHCb collaboration

REF 2022 November 2, 2022

Extrinsic and intrinsic charm

Most PDF fits assume heavy quarks in the proton are generated perturbatively, but non-perturbative "intrinsic" heavy quarks are also possible.

Intrinsic charm predicted by Light-Front QCD (LFQCD): PLB 93 (1980) 451-455 Heavy charm quarks carry most of the proton momentum \rightarrow valence-like bump.

JHEP 02 (2018) 059

Evidence for intrinsic charm: EMC $F_2^{c\bar{c}}$ data (Nucl. Phys. B 213, 31-64)

- First experimental evidence for intrinsic charm
- \blacksquare Fixed target DIS: $Q \lesssim 10~{\rm GeV}$
- Interpretation has been controversial. See Adv. High Energy Phys. 2015, 231547 for a review
- Typically omitted from global PDF fits

Looking for Intrinsic Charm with Z + c (PRD 93, 074008 (2016))

At leading order, Z + c occurs via $gc \to Zc$. In the forward region (high y(Z)), this probes the valence region where intrinsic charm is expected.

 $\binom{0.14}{\omega}$ 0.12 $\frac{0.12}{\omega}$ 0.12 $\frac{0.12}{\omega}$ 0.08 $\frac{0.14}{\omega}$ Central Region $\Leftarrow \Rightarrow$ Forward Region Zc $|\eta| < 2.4$ $2.0 < \eta(\mu) < 4.5$ $p_{\rm T}(\mu) > 25 \, {\rm GeV}$ $p_{\rm T}(\mu) > 20 \,{\rm GeV}$ $p_{\rm T}(i) > 30 \,{\rm GeV}$ $2.2 < \eta(j) < 4.2$ $p_{\rm T}(i) > 20 \,{\rm GeV}$ g QQQQ NLO SM 0.06 cNo IC 0.04 IC allowed 0.02 999 LFQCD $\langle x \rangle_{\rm IC} = 1\%$ 0 3 0

y(Z)

- Forward spectrometer: $2 < \eta < 5$
- tracking, calorimetry, RICH, muon systems
- Excellent vertex resolution $(10 50 \ \mu \text{m in } x \text{ and } y)$
- Track $\sigma(p)/p\sim 0.5-1.0\%$
- Fixed-target mode with the SMOG system

Studying PDFs with LHCb

Identifying charm jets with the LHCb detector (JINST 17 P02028 (2022))

- LHCb has excellent momentum and vertex position resolution
- Identify jets using displaced vertices (DVs)
- Charm jets tagged with an efficiency of \epsilon = (24.0 \pm 0.6 \pm 1.4)%

LHCb Results (PRL 128 (2022) 8, 082001)

Results disagree with no-IC predictions at forward y(Z) and are consistent with valence-like IC.

Implications: Evidence for intrinsic charm in the proton (Nature 608, no.7923, 483-487)

NNPDF analysis finds LHCb Z + c and EMC $F_2^{c\bar{c}}$ data both favor IC at about 3σ .

LHCb could make a definitive observation in Run 3 and differentiate between IC models. Close to answering a question almost as old as QCD itself!

Thank you!