
1 

 

Ms. Nahid Vasim 

 

    Aligarh Muslim University, Aligarh 

India 

 



In Quantum Field Theory the 
perturbation series is divergent. 
 

 𝑪𝒏𝜶𝒔
𝒏

𝒏

 

 
 
 
 
Dyson’s argument [Phys. Rev. 85, 631 
(1952)] 
Perturbation series are typically 
divergent with zero radius of 
convergence. 
 

Each term in the series first decrease and 
gradually approaches to a minimum and 
then start to increase without any limit.  
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Diverging perturbation series 

What   does   𝐂𝐧𝛂𝐬
𝐧 = 𝐧 ∞  do ?  

 No way restricts predictions 
from the perturbation series for 
practical applications.  

 
 
 We want a good approximation 

by calculating just a few terms of 
the perturbation series, not all 
of them! 

 

 𝑪𝒏𝜶𝒔
𝒏

𝒏
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Effect of running coupling of QCD 

The strong coupling acts as the expansion parameter. 
  

 𝑪𝒏𝜶𝒔
𝒏

𝒏

 

 
 
The coefficient 𝑪𝒏 have factorial-like growth; n!  
 
 
There are 3 known sources of n! behavior: 

• infrared (IR) renormalons  
• ultraviolet (UV) renormalons  
• instantons. 
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Best guess of perturbation theory 

There are ways where a value can be assign to sum of divergent series 

For a factorially divergent series Borel summation is mostly used. 

Step 1 :   Borel transform 

Step 2:   Corresponding Borel integral Divergent behavior is encoded 
in the singularities of Borel 
transform.  



Divergence of perturbative series in QCD 

The divergence of perturbative series in QCD is reflected through the pole 
singularities in Borel plane. 
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•  Infrared (IR) renormalons 
•  Ultraviolet (UV) renormalons  
•  Instantons. 

If the Borel integral has no singularity in the positive real axis and the terms 
in the series do not increase faster than the factorial growth, the divergent 
series is Borel summable. 
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• IR renormalon are the first Borel non-summable singularity of the 
QCD expansions.  
 

• The non perturbative contribution stems from the IR renormalon. 
 
 
 

 
• It lie on the positive real axis of the Borel plane and the integral is not 

defined.  
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Infrared renormalon 

Low momenta 𝑘⊥ Nonperturbative corrections 

Ambiguity of the Borel integral! 
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Uncertainty due to renormalon 

● The Borel integral  still be defined by moving the contour above or 

below the singularities. 

● Difference between various regularization prescriptions gives an 

estimate of the uncertainty due to the renormalon singularity.  

The analytical structure of the Borel transform is connected to the large 
order behavior of series 

𝑟𝑛 = 𝑛! 𝑎
𝑛 For 𝑎 > 0, fixed sign series. 



IR Renormalons in (color dipole) gluon distribution 

Relation between dipole amplitude N and the unintegrated dipole gluon distribution 
Ƒ 𝑥, 𝑘⊥    [Levin and Ryskin;1987] 

 𝒅𝟐𝒃 N 𝒓⊥, 𝒃⊥, 𝒙 =  
𝟐𝝅

𝑵𝒄
 𝒅𝟐𝒌⊥ 𝟏− 𝒆

𝒊𝒌⊥ .𝒓⊥  𝜶𝒔 𝒌⊥
𝟐 𝟏

𝒌⊥
Ƒ 𝒙,𝒌⊥  

Running coupling. 
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Resumming 
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Resumming 

Outside the saturation region. 
𝑘2⊥ < 𝑄𝑠 
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Resumming 

Outside the saturation region. 
𝑘2⊥ < 𝑄𝑠 



IR Renormalons in (color dipole) gluon distribution at small-x 

Relation between dipole amplitude N and the unintegrated dipole gluon distribution 
Ƒ 𝑥, 𝑘⊥    [Levin and Ryskin;1987] 

 𝑑2𝑏 N 𝑟⊥, 𝑏⊥, 𝑥 =  
2𝜋

𝑁𝑐
 𝑑2𝑘⊥ 1 − 𝑒

𝑖𝑘⊥ .𝑟⊥  𝛼𝑠 𝑘⊥
2 1

𝑘⊥
Ƒ 𝑥, 𝑘⊥  
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𝐱Ƒ𝐃𝐏 𝐱,𝐤⊥ |𝐐𝐬≳𝐤⊥≫⋀𝐐𝐂𝐃   

In the small momenta(𝐤⊥) regions, within the window of momentum scale 
⋀𝐐𝐂𝐃 and saturation scale 𝐐𝐬 where the running coupling becomes large, 
infrared renormalons is believed to be the source of the divergence in the 
perturbation series. 



We use a special solution of BK equation or S-matrix (Levin-Tuchin solution) that is valid 
for small-x and large transverse separation (large 𝐫⊥ ) to derive Color dipole distribution 
that would be valid for small-x and small transverse momentum (small 𝐤⊥).  
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Levin-Tuchin Solution 
 

Gaussian in ln2 r⊥
2Qs
2 Y  

 

This is valid when r⊥
2Qs
2 Y ≳ 1, 

leading to large logarithms in the 
exponent. 

 
 

  

𝒙𝑮𝑫𝑷 𝒙,𝒌⊥ = 
𝑺⊥𝑵𝒄
𝟐𝝅𝟐𝜶𝒔

 𝒌⊥ 
𝒅𝟐𝒓⊥
𝟐𝝅 𝟐
 𝒆−𝒊𝒌⊥ .𝒓⊥  𝑺 𝒙,𝒓⊥  

 

𝐒 𝐫⊥, 𝐘 =  𝗲𝘅𝗽 −𝛕 ln
𝟐 𝐫⊥
𝟐𝐐𝐬
𝟐 𝐘   

Color dipole TMD at small-x and small transverse momentum 

 M. Siddiqah, N. Vasim, K. Banu, T. Bhattacharyya and R. Abir, 
 Phys.R D 97(2018),054009.  



Color dipole TMD at small-x and small transverse momentum 

We developed new mathematical techniques to Fourier transform lognormal 
distributions in two dimension. 

When resumming the series in leading log accuracy, the results showing up 
striking similarity with the Sudakov form factor.  

𝐱𝐆𝐃𝐏 𝐱, 𝐤⊥ |𝐐𝐬≳𝐤⊥≫⋀𝐐𝐂𝐃  ≈ − 
𝐒⊥𝐍𝐜𝛕

𝛑𝟑𝛂𝐬
  𝐥𝐧

𝐤⊥
𝟐

𝟒𝐐𝐬
𝟐 𝐘

𝐞𝐱𝐩 −𝛕 ln𝟐
𝐤⊥
𝟐

𝟒𝐐𝐬
𝟐 𝐘

  

Inside the saturation region, the 
dipole gluon distribution is expected 
to go to zero in zero momentum. 
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 M. Siddiqah, N. Vasim, K. Banu, T. Bhattacharyya and R. Abir, 
 Phys.R D 97(2018),054009.  



IR Renormalons in (color dipole) gluon distribution 

On resumming the contribution inside the saturation region , the effect of renormalon in 
the Borel integral as 
 
 
 

IR renormalons 
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𝟑
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𝟏
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The non-linear saturation effects at small-x shift the first IR pole at the Borel 
plane towards zero from 2/β2 to 1/β2 

 𝑑𝑏 exp −
1+ 𝜖 𝑏

𝛼 𝜇2
 
1

𝑏 − 𝟏 𝜷𝟐 

∞

0
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Pole outside the 
saturation region 

N.Vasim,  R.Abir,  Nuclear Physics B 953 (2020), 114961. 
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IR Renormalons in (color dipole) gluon distribution 

N.Vasim,  R.Abir,  Nuclear Physics B 953 (2020), 114961. 

Associated uncertainty: 
 
•  An enhanced non-perturbative uncertainty 

 

~
𝒓⊥
𝟐

𝜷𝟐
 ᴧ𝑸𝑪𝑫

𝟐  
𝐥𝐧 ᴧ𝑸𝑪𝑫

𝟐

𝟒𝑸𝒔
𝟐
 exp −𝝉 ln𝟐

ᴧ𝑸𝑪𝑫
𝟐

𝟒𝑸𝒔
𝟐
  

 
 
 
• Presence of the Sudakov factor indicates that the saturation effect 

tend to suppress the IR renormalon effects at small-x. 
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Summary 

• Non-perturbative effects in QCD actually stems from the 

diverging nature of the perturbative series.  

 

• The non-linear saturation effects at small-x shift the  

first IR pole at the Borel plane towards zero. 

 

• The saturation effects suppress the renormalon effect 

through a Sudakov type of soft factor. 
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• Non-perturbative effects in QCD actually stems from the 

diverging nature of the perturbative series.  

 

• The non-linear saturation effects at small-x shift the  

first IR pole at the Borel plane towards zero. 

 

• The saturation effects suppress the renormalon effect 

through a Sudakov type of soft factor. 

Thank you. 


