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Introduction

¢

The parton distribution functions (PDFs) and fragmentation functions (FFs)
provide the dynamics of the partons inside hadrons.

In the last decade, hadron physics community extended the the investigation
of parton dynamics by proposing new kind of parton distribution function,

called transverse momentum dependent parton distribution function
(TMDPDF).

The TMDPDFs can provide both the momentum and space information of a

single parton inside a hadron. Therefore, it can provide 3D structure of a
hadron.

Apart from 3D structure of hadrons, it can also provide information about orbital
motion of parton, spin-orbit correlations in QCD etc.

In this work, we include the threshold effect in TMDPDFs and TMDFFs. The
threshold effect is important for reliable theoretical prediction near the right
edge of the phase space.
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D. Anderle, F. Ringer, W. Vogelsang
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The TMD factorization was first derived by Collin, Soper and Sterman

(hep-ph/0409313) and later it has been also derived in Soft Collinear Effective
Theory (SCET).



Theoretical Formalism for TMDPDF
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Theoretical Formalism for TMDPDF

® When the partonic threshold variable is close to 1; the previous factorization is not
complete because it does not include the threshold effect.

Q> Q(1—7)>qr

@ In this kinematic regions, the new scale hyrarchy introduces an additinal degrees of
freedom known as collinear-soft (csoft) degrees of freedom.

® The momentum scaling of the csoft mode:

2
kgs = (ﬁ ’ kcs: n: kcs: kcs,J_) ~ (Q(l — %)7 Q(lqi %)vQT)

Bauer, Tackmann, Walsh, Zuberi 2012; Procura, Waalewijn, Zeune 2015; Larkoski,
Moult, Neill 2015; Becher, Neubert, Rothen, Shao 2015; Chien, Hornig, Lee 2016;
Pietrulewicz, Tackmann, Waalewijn 2016

® One can combine csoft function with soft function to define rapidity regularized
‘modified soft’ function as;

gc(Na bT7 L C) — g:;lnSUb(Na bT7 s C/VQ)\/S(bTa M V)




Theoretical Formalism for TMDPDF

Refactorization of the TMDPDF takes the form:
r N—oo  Gunsu 3
fir}\i];,v[D(Nanau) ; :516 b(NabTaiuag/V2)\/S(bTﬂua VZfz/h(Nau)

= SYC(Na bTﬂ 22 C)

_ 1
Fon(NV, ) = /O da 2 f, (2, 11)

The definition of the soft function is same as the usual TMD case.

Evolution of Collin-Soper scale is also same as usual TMD case because the
threshold resummation will not effect the rapidity divergence.

~
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Theoretical Formalism for TMDPDF
k(br, 1) = —Leusp(as) Ly + O (02) Ly = In(u2b3/b2) with by = 27
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Theoretical Formalism for TMDPDF

9
" (as) = 2 cusp(ars) an + 279y () From RG consistency
’é Th 4 2T% + 2T =0
FSC (as) — —Fcusp(as) lnll/—']; —|_ ’)/Sc (OZS) We Obtain
_ 2 _
Ie(ag) = =2 Deusp(as) InN + 25 (a) (ITVD Q2 N — Ner

The all order resummation formula can be obtained by solving RG equation form their
intrinsic scale to a common scale. The NLL resum formula is given by

d2qr drPY 70 / 27ri (T ) / 27 Jolqr br) (

X Z e2fTTMD(N, br, Q) fTEMP(N, br, Q)




Theoretical Formalism for TMDPDF
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Theoretical Formalism for TMDFF
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Numerical Result

Modified Collin-Soper scale and Mellin inversion

For large valus of N, the collin-Soper scale may go down the non-perturbative scale which
violates our factorization condition; Q > Q(1—7) > qr

G =GP, Qo) = (3)2 (1 N Q%N2>

N (Q)?
The aeneral Mellin invarsion formula reads
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We chose ¢ = /2 and ¢ = 1.6 7



Numerical Result for TMDPDF
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Numerical Result for TMDFF
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Cross section for DY. DIA and SIDIS
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Conclusion

¢ We provide theoretical formalism for for threshold improved TMDPDFs and TMDFFs.

¢ In our numerical analysis, we observe that to have a kinematic consistence result,
one needs to modify Collins-Soper scale.

¢ The modified Collin-Soper scale will introduce two new poles. We provide Mellin
inversion prescription to avoid all kind of ploes.

@ Our formalism will serve as a reliable theoretical input for extracting the TMD functions
at large x value.
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