Measurement of 1-jettiness in deep-inelastic ep scattering at HERA

J. Hessler for the H1 Collaboration

Max-Planck-Institut für Physik

Resummation, Evolution, Factorization 2022 1.11.2022

Neutral current deep-inelastic scattering

MAX-PLANCK-INSTITUT FÜR PHYSI

Neutral current deep-inelastic scattering

- Process $ep \rightarrow e'X$
- Electron or positron scattering

Kinematic variables

- Virtuality of exchanged boson Q^2 $Q^2 = -q^2 = -(k - k')^2$
- Inelasticity, Bjorken-x and centre-of-mass energy

$$y = \frac{p \cdot q}{p \cdot k}$$
 $Q^2 = x_{Bj} \cdot y \cdot s$

Breit frame

- Exchanged boson completely space-like
- Collides head-on with parton (brick-wall frame)

- Integrated luminosity $L = 351.6 \text{ pb}^{-1}$
- Electron and positron runs
- $E_e = 27.6 \text{ GeV}, E_p = 920 \text{ GeV}$ $\rightarrow \sqrt{s} = 319 \text{ GeV}$

- Asymmetric design with trackers, calorimeter, solenoid, muon-chambers, forward & backward detectors
- Trigger requires high-energetic cluster in LAr calorimenter
- Particles are reconstructed using a particle flow algorithm
 → Combining cluster and track
 information without
 double-counting of energy

The 1-jettiness event shape observable

• Axes incoming parton and q + xP:

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{x P \cdot p_i, (q + xP) \cdot p_i\}$$

- Infrared safe and free of non-global logs
- Sensitive to strong coupling α_s and PDFs

DIS thrust normalised to boson axis

• Normalisation with Q/2 of the event:

$$au_{Q} = 1 - rac{2}{Q} \sum_{i \in \mathcal{H}_{\mathcal{C}}} P^{\textit{Breit}}_{z,i}$$

• Only particles in the current hemisphere contribute

Equivalence follows from momentum conservation:

$$\tau_Q = \tau_1^b$$

Sketch taken from Kang, Lee, Stewart [Phys.Rev.D 88 (2013) 054004]

The 1-jettiness event shape observable

1-jettiness

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{x P \cdot p_i, (q + x P) \cdot p_i\}$$

Visualisation of the 1-jettiness with event displays

- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton

$$\rightarrow$$
 Small τ_1^b

- Dijet event
- More and larger contributions to the sum over the HFS \rightarrow Large τ_1^b

MAX-PLA

HERA-II data

- High- Q^2 region: $Q^2 > 150 \text{ GeV}^2$
- Luminosity: $L = 351 \text{ pb}^{-1}$

Signal Monte Carlo models

- Rapgap (ME + PS)
- Djangoh (CDM)

Little background in incl. DIS

- Photoproduction
- Low-Q² NC DIS
- Other sources are negligible (QEDC, CC DIS, di-lepton production)

Reconstruction

• Use the I Σ method \rightarrow Independent of electron ISR

$$y = y_{\Sigma} = \frac{\Sigma}{\Sigma + E_{e'}(1 - \cos \vartheta_{e'})}$$

$$Q^2 = Q_{\Sigma}^2 = rac{E_{e\prime}^2 \sin artheta_{e\prime}}{1-y_{\Sigma}}$$

DIS thrust - a 4π observable

MAX-PLANCK-INSTITUT FÜR PHYSIK

- All particle candidates in all DIS events contribute $\left(\tau_Q = 1 \frac{2}{Q} \sum_{i \in H_r} P_{z,i}^{Breit}\right)$
- \bullet Normalised contribution to τ_Q for different ranges in polar angle ϑ and energy

- Mainly tracks and clusters in the central part of the detector contribute ($25^{\circ} < \vartheta < 153^{\circ}$)
- $\bullet\,$ Mainly particles with high energy contribute (E>1 GeV)
 - \Rightarrow Well measured particles dominate in au_Q

1-jettiness - DIS thrust

MAX-PLANCK-INSTITUT FÜR PHYSIK

DIS thrust

- $au_Q
 ightarrow 0$: DIS 1-jet events
- $au_Q
 ightarrow 1$: Dijet events
- $\tau_Q = 1$: Dijet event, both jets in beam hemisphere

MC models

- Harder spectrum in Django (more dijet events)
 → Agrees with previous measurements
- Reasonable agreement between data and MC
 - \rightarrow Full τ_Q range measurable

Single differential cross section

Single differential cross section

- Unfolded using bin-by-bin method
- Corrected for electron QED radiative effects
- Divide by τ_1^b -bin width

Comparison with MC models

- Djangoh 1.4: Colour-dipole-model
- Rapgap 3.1: ME + parton shower
- Pythia 8.3 + Dire

Dire Parton Shower

- Dipole-like shower
- Inclusive NLO DGLAP corrections to the shower evolution are included

Phase space

- $150 < Q^2 < 20.000 \text{ GeV}^2$
- 0.2 < *y* < 0.7

Peak region (resummation region)

• Not well described by the models

Tail region (fixed order region)

- Djangoh and Rapgap perform well
- Pythia+Dire underestimates the data

Single differential cross section

Comparison with parton shower models

- Peak region has strong dependence on different parton showers
- No PS model provides a fully satisfactory description
- 'Pythia default' underestimates au=1

$\gamma p \rightarrow \!\! 2 \text{ jets+X NNLO prediction form}$ NNLOJET

- NP corrections from Pythia 8.3 (sizeable)
- NNLO provides a reasonable description of fixed-order region
- NNLO improves over NLO

MAX-PLANCK-INSTITUT FÜR PHYSIK

MAX-PLANCK-INSTITUT FÜR PHYSIP

MAX-PLANCK-INSTITUT FÜR PHYSIK

Comparison with further MC models

- Pythia+Vincia
- Pythia w/ default shower

Herwig 7.2

- Often similar to Pythia, but peak region too low (DIS cross section too low)
- $\bullet\,$ Some structure at high τ

MAX-PLANCK-INSTITUT FÜR PHYSIP

NNLO pQCD ($ep \rightarrow 2 \text{ jets}+X$)

- Reasonable description in entire phase space
- Improved description with increasing Q^2
- Small scale uncertainties

 \rightarrow Altogether: NNLO improves over NLO but NP corrections are sizeable

Summary and outlook

- A first measurement of the 1-jettiness event shape observable in NC DIS was presented
- 1-jettiness is equvalent to DIS thrust normalised with Q/2
- Classical Monte Carlo provides a good description of the data
- Modern Monte Carlo performs reasonably well
- NNLO fixed order predictions ($ep \rightarrow 2$ jets) provide good description in the region of validity, but hadronisation corrections are large
- H1prelim-21-032 https://wwwh1.desy.de/psfiles/confpap/EPSHEP2021/H1prelim-21-032.pdf

Outlook

- N3LL and NNLO+PS predictions need to be confronted with data
- Sensitivity to α_s and PDFs needs to be explored
- Data will become useful for improving (DIS) MC generators

D. Reichelt @ Workshop: Jet Physics: From RHIC/LHC to EIC https://indic.bnl.gov/event/14375/contributions/65419/attachments/ 41842/10086/JetsLCHtoEIC_Reichelt.pdf

Backup

Sensitivity to $\alpha_{\it s}$

- Plot shows fixed order NLO calculation $ep \rightarrow e + 2jets$ for τ_1^b on PARTON LEVEL
- First bin is empty by definition
- Prediction scales linearly with strong coupling α_s

MAX-PLANCK-INSTITUT FÜR PHYSIK

Pythia+Vincia α_s variations (± 5%)

- Plot shows Pythia 8.3 + Vincia prediction for τ_1^b on PARTICLE LEVEL
- Vary value of α_s in the simulation to test sensitivity
- High sensitivity in tail region
- No sensitivity in peak region (Born level kinematics)