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Contributions to PDF uncertainties

Theoretical Experimental

Parametrization Methodology

In all four categories of uncertainties, we can further distinguish

PDF fitting accuracy and PDF sampling accuracy.

Accuracy in inputs —commonly (_I L) A new avenue to understand

integrated in global analyses. PDF tolerance.

[Kovarik et al, Rev.Mod.Phys. 92 (2020)]

In this talk, we will discuss both — particular emphasis on sampling, though.
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CT1 8 analySIS In d nUtShe” [Hou et al, Phys.Rev.D 103 (2021)]

o ldentify and include LHC data set available by mid-2018 with highest sensitivity to PDFs, using
fast Hessian techniques.

o Benchmark predictions for newly implemented processes

o Examine ~350 PDF parametrization forms — more on this in a few slides

o Examine QCD scale dependence in key processes

< Validate results using a strong set of goodness-of-fit tests

© Examine agreement between experiments using diverse statistical technigues
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CT18 analysis in a nutshell

[Hou et al, Phys.Rev.D 103 (2021)]

o ldentify and include LHC data set available by mid-2018 with highest sensitivity to PDFs, using

fast Hessian techniques.
o Benchmark predictions for newly implemented processes
o Examine ~350 PDF parametrization forms — more on this
o Examine QCD scale dependence in key processes
< Validate results using a strong set of goodness-of-fit tests

in a few slides

© Examine agreement between experiments using diverse statistical technigues

Four sets proposed:
CT18 (nominal)
CT18A (include ATLAS 7TeV),

CT18X (DIS scale variation u? ,,,; = 0.8 <Q2 - 0'3G6V2>),

%03

CT18Z (ATLAS 7TeV+scale variation)

CT18 and CT18Z span the most different hypotheses, and
the combination of the two represents the most complete
uncertainty.
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Theoretical uncertainties in CT18

Theory predictions and choice of scale

Choice of scale for inclusive jet data leads to a different gluon PDF yet
contained in the CT uncertainty.
Resilience in global fit reflected through the tolerance.

Scale dependence and small-x resummation — K. Xie (in progress)

NNPDF and xFitter adopts BFKL to resum small-x logs. CT adopt a
saturation DIS scale and obtain similar quality of description of data.

Small-x resummation enhances gluon PDF, similarly to N3LO (MSHT, see T.
Cridge’s talk)

Dependence on m,_. —CT14 Intrinsic Charm

Study of dependence on the charm pole mass:
CT14 Intrinsic Charm analysis [Hou et al., arXiv:1707.00657]
CT18 Fitted Charm analysis (very soon)
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From small to big data sets — sampling uncertainties

A = e dudble oS Confidence
—Bias intervals

Confidence
intervals

The truth //t Our model Small sample size Large sample size
of the truth

With an increasing size of sample n — o0, under a set of hypotheses, it is usually expected

~1
that the deviation on an observable decreases like <\/Z ) . That’s the law of large numbers.

What uncertainties keep us from including the truth, u?

The law of large numbers obviates the quality of the sampling, = 'E:_redUC‘b'e error
== pBlas
lllustration from:
Pavlos Msaouel (2022)
The Big Data Paradox in Clinical Practice

Cancer Investigation, 40:7, 567-576
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Xiao-Li Meng

Trlo |dent|ty The Annals of Applied Statistics

Vol. 12 (2018), p. 685

The trio identity remedies to that problem be accounting for sampling bias:

u — [ = (data+sampling defect) X (measure discrepancy) X (inherent problem difficulty)

l l

depends on the sampling algorithm

can tend to o6/4/n for random sampling

== |rreducible error

- = statistical model, quality of data,...
== Bias

For a sample of n items from the population of size N, we can consider an array built by the random
spanning of the binary responses of the N — n (0) and n (1) items, so that

| N
u — ji = Corr[observable, sampling quality] X 41/ — — 1 X o(observable)
/)

Hickernell
MCQMC 2016
1702.01487
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Sampling bias

The sample deviation can be large if the sampling is not sufficiently random.
Standard error estimates can be misleadingly small.

> critical role of controlling for sampling biases in determination of PDFs.
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Sampling bias

The sample deviation can be large if the sampling is not sufficiently random.

Standard error estimates can be misleadingly small.

> critical role of controlling for sampling biases in determination of PDFs.

How do we know the “data+sampling defect=confounding correlation” of our analysis?

CT: tier-1 and tier-2 penalties related to tolerance criteria.

Size of uncertainties reflect a series of confounding sources.

Verification that proper spanning of parameter space is
compatible with total uncertainties (a posteriori).
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Hopscotch scans

Parton distributions need a representative sampling

2205.10444

|Algorithm for observable-oriented verification of representative uncertainty

62} LHC 14 TeV, 20
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To sample the PDF dependence for Monte Carlo-based global analyses:

sample primarily the coordinates with large variations of physical cross section o.

Using NNPDF4.0 public code, we then employ:

40 41

n = the number of replicas/EV directions/...

1. Basis coordinates in the PDF space — Hessian representation

2. Knowledge of 4-8 "large dimensions" in PDF space controlling variation of o
3. A moderate number of MC PDF replicas varying primarily in these directions

A. Courtoy—IFUNAM

Robust PDFs

REF 2022

Based on the ideas of
[Hickernell, MCQMC 2016, 1702.01487]
[Sloan,|.H.,Wo zniakowski, 1997]



How to play hopscotch?

In the Hessian representation, the chi square behaves like a paraboloid of n,
dimensions, thus defining a global minimum.

aram

Hessian and Monte Carlo representations of given PDF sets are shown to be
compatible — convertions exist in both ways.

Hence, a chi-square paraboloid can also be defined for Monte Carlo-based analyses.

For example, here’s a reconstructed eigenvector (EV) direction for the

NNPDF4.0 set, in blue.

Its shape indicates a larger paraboloid than the red curve:

e we can throw the marker in (linear combinations of) the directions
whose variation affect given cross sections the most

* we generate new replicas — the hopscotch replicas

* we draw the approximate regions defined by the latter for the cross
sections of interest

A. Courtoy—IFUNAM Robust PDFs REF 2022




Monte-Carlo sampling for PDF parametrizations: cross sections for LHC
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Color ellipses:
© areas of possible solutions corresponding to lower (Ay? < 0) w.r.t. the

nominal solution
o found through the hopscotch scan — a dimensionality reduction method.
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Monte-Carlo sampling for PDF parametrizations: cross sections for LHC
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© areas of possible solutions corresponding to lower (Ay? < 0) w.r.t. the

nominal solution
o found through the hopscotch scan — a dimensionality reduction method.
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Monte Carlo and Hessian representation — role of constraints

(s-8)/(s+S) (x,Q) at Q=1.7 GeV (sym. err)
NNPDF4.0 NNLO 68% (solid), alt. (Ax?)=0 (dashed)

Role of constraints in global analyses: can act as priors
to the final distributions.

T T T T J-\\ T4

Choice for positivity, integrability, large/small-x behavior,
... will affect PDF sets in the interpolation region.

Hopscotch replicas pass all CT criteria:
need for a benchmark on constraints?

0ol alt EV33' ;'
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X

Hopscotch uncertainties wash out evidence ¥ (x.Q) at Q=1.7 GeV (sym. )

for large positive strangeness asymmetry and NNPDF4.0 NNLO 68% (solid), alt. (Ax?)=0 (dashed)
0020y — 71—

non-zero intrinsic charm.

alt. EV33

The understanding of theoretical constraints in MC vs.
Hessian is very relevant to polarized PDFs, TMDs, etc.
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Conclusions

The CT18 analysis includes various sources of theoretical uncertainties, displayed through various sets of PDFs.
Further ongoing studies focus on understanding the interplay between theoretical, parametrization and

methodological uncertainties.
Highlights on the sampling uncertainties:
1. A PDF fit with few parameters and A;(Z = | tolerance probably underestimates the parametric uncertainty.

2. Difficult to sample the full parameter space with many parameters without biases. Analytic minimization like
in CT18 and MSHT20 finds the global minimum and EV directions by construction. Validating the final PDFs
may be easier than understanding the respective fitting algorithm.

3. A hopscotch scan intelligently reduces dimensionality of the relevant PDF parameter space. Can be
performed using public codes (LHAPDF + mcgen + xFitter/NNPDF fitting codes) to verify the PDF
uncertainty for a specific QCD cross section or observable.

Hopscotch scans illustrated for the NNPDF4.0 —thanks to the publicly available code.

Impact on the uncertainties at small and large x, PDF ratios, correlations, strangeness asymmetry, fitted charm, ...

Insights applicable to other analyses using a large parameter space — CT/MSHT tolerance, polarized PDFs, etc.
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Toward robust PDF uncertainties

Strong dependence on the definition of corr.

syst. errors would raise a general concern:

Overreliance on Gaussian distributions
and covariance matrices for poorly

understood effects may produce very
wrong uncertainty estimates

[N. Taleb, Black Swan & Antifragile]

For instance, the
cov. matrix may
overestimate

the correlation
among discrete
data points,
resulting in a too
aggressive error

estimate
[Anwar, Hamilton, P.N.,
arXiv:1905.05111]

2021-05-03
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Setting for NNPDF4.0 code

The evaluation of)(2 for NNPDF4.0 nnlo replicas is done by the public NNPDF code [NNPDF, EPJC 81],
with its default setting.

)(2 is computed by the perreplica chi2 table function of validphys program of the public
NNPDF code.

The kinematics cuts for the correlated uncertainties are fixed as the same of the NNPDF4.0 global
analysis.

The minimum value of Q2 and W? for DIS measurements are hence chosen to be 3.49 GeV and 12.5
GeV respectively.
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Origin of sampling biases — experience with large population surveys

Surveys of the COVID-19 vaccination rate with very large samples of responses and small
statistical uncertainties (Delphi-Facebook) greatly overestimated the actual vaccination rate
published by the Center for Disease Control (CDC) after some time delay.

A Delphi-Facebook (n = 250,000)

80 -

m Census Household Pulse e
nature Census Hol o=
Explore content v About the journal v Publish with us v ® AXiOS—IpSOS (n ~ 1 ,OOO) /‘/

601 . cDC (benchmark) Va

Y

nature > articles > article

Article | Published: 08 December 2021

Unrepresentative big surveys significantly
overestimated US vaccine uptake

Valerie C. Bradley, Shiro Kuriwaki, Michael Isakov, Dino Sejdinovic, Xiao-Li Meng & Seth Flaxman

20- /‘-/:f A
A

Nature 600, 695-700 (2021) | Cite this article

Vaccinated (at least one dose) (%)

Based on
[Xiao-Li Meng, The Annals of Applied Statistics, Vol. 12 (2018), p. 685]

The deviation has been traced to the sampling bias.
In contrast to the statistical error, the sampling bias can involve growth with the size of the sample.
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Law of large numbers
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Trio identity

] _ _ _ 1200 & population: N,=900 ]
If we bias the selection by taking 200 items from one group and 100 from I Sample;: Ny=300 N
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The trio identity remedies to that problem be accounting for sampling bias:

u — (i = (data+sampling defect) X (measure discrepancy) X (inherent problem difficulty)

This identity originates from the statistics of large-scale surveys
[Xiao-Li Meng, The Annals of Applied Statistics, Vol. 12 (2018), p. 685]
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 3
Guidance from specific cross sections:

we identify 4-7 EV directions that give the largest
displacements for a given A)(z per pair.

E.g., 0, vs. oy is represented by the 6 corners of a projected
octahedron, corresponding to “large” EV directions: 2, 4, 5,
10, 17, 20.

Other directions generally give smaller displacements.
Large EV directions are shared among various pairs of
Cross sections.

The contours are for Ay? = + 10,0, — 10, — 20 w.r.t.
NNPDF4.0 replica O (red).
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 4

For each pair of cross sections, we generate 300 replicas by sampling uniformly along the “large” EV directions.

Sortthe n

pairs

0z[pb]

765

x 300 resulting replicas according to their Ay? w.r.t. to NN40 replica 0, here for A)(ezxp.

795/
790,
785
780,
775/
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Ax?=-70
Ax*=-80 v vv y 'V
\
NNPDF4.0 (nominal) w
\ A/ \ 4 Vv
4 \ 4
v v
v v
h 4
\
v

ATLAS 13TeV

Each of the Ay? = 0 = 3 replicas
is an acceptable PDF set from
the NNPDF4.0 fit.

The blue ellipse (constructed using a convex hull method) is an approximate region containing all found replicas

with Ay? = 0+ 3.

The blue area is larger than the nominal NNPDF4.0 uncertainty (red ellipse).
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Monte-Carlo sampling for PDF parametrizations: cross

sections for LHC
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