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Motivation

Our main objective with DEDUCTOR is to advance the theory of parton shower algorithms.
Our strategy has two main cornerstones:

Parton shower is perturbative QCD
- Based on Feynman graphs
- Evolution of the QCD density matrix (evolution at amplitude level)
- Quantum colour and spin,...
- Can be defined order-by-order systematically

Parton shower is quantum statistical physics

- The shower evolution and the shower cross sections are solution of a renromalization group equation
- Defining/generalizing/abusing the framework as much as possible

- Defining and understanding different shower schemes

- More concrete goal: Fitting the angular ordered shower into this framework

- Summation of large logarithms

- Threshold logarithms



NkLO calculations

Singularities cancel each other here
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Hard part, finite in d=4 dimension

Usually D~"(i) is constructed by hand and D(jz) is its inverse.

Born term

NLO contributions
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renormalization scale to the
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Shower Cross Section

The fixed order cross section is fine as long as we can calculate at “all order level”. But life is not that easy...

Defining the normalised singular operator as - - . .
V(:u) — Ifbarep(ﬂ)]p F (:LLR(:LL))

J/

X(ﬁ) — fbarep<ﬁ)f_1 (/’LR(/j))V_l (/j) - Finite operat;rr
- Doesn’t change the number of partons and
their flavours

- Operates only in the color space
-truncated at NLO, NNLO level

-prefers large scale, 12 ~ Q% |

) . R -Choose a hard scale, iy ~ \/Q?
o[04]) = (1| O5 X (i) V(i) F (1x) | pu(i2)) -Choose a cutoff scale, fir ~ 1GeV < py |
s -Insert a unit operator before the measurement
- prefers small scale, 7 < p> - operator as '

-that is in conflict with the hard part
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LC+ decomposition (approx.)

Despite of the name it is not an approximation of the colour space, it is an approximation of the shower evolution

operator.

 Glauber/Coulomb gluon part

' - Imaginary part of the 1-loop soft

. singularities

. - Highly non-trivial in color space

- Can be treated perturbatively or
. fully exponentiated

____________________________________________

LC+ part

; - Diagonal operator in the color space
. - Exact in the collinear limit

. - Some soft interferences are

. included but not all

. - Easy to exponentiate

____________________________________________
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 Wide angle soft part

. - Only wide angle soft singularities

. - Only single log contribution :
" -Leads to only 1/NC2 suppressed terms
. - Can be treated perturbatively '

This decomposition preserves unitary,

(18" (7) = (1]Ste () = (1 Seore (i) = (1]S3 () = 0
and it allows us to treat the wide angle soft part perturbatively
in a very efficient and flexible way.

No approximation of the colour group, it is
the full SU(3) algebra

Can handle any colour interferences

{Chn #F (¢}

At the end of the shower we calculate the
full SU(3) colour overlap without
approximation,

el {ctn)

We have a very fast algorithm to do this,
and can deal with hundreds of partons.

No need of tweaking the C/2, Cr.
colour factors.




Infrared sensitive operator

We can consider a more constructive approach to build the full
infrared sensitive operator. This operator basically represents the W\@
QCD density operator of a m — X (anything) process.
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The structure is rather straightforward:
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This function is the main focus of this talk.




Infrared sensitive operator

In general the ©¢ (I; {p, f }mtn., {€1n,; i) functions defines the unresolved region.

\ \
“Resolved region”

Unresolved region
U(G, I; [i)

The singular surfaces may not extend outside
of the unresolved region.

Singular surfaces |

o

1 if ({]57 f}ernRv {g}nv) e U(G, I; ji)
0 otherwise

There can be no naked singularity!

Oc(I;1{p; f}m-|—nR, {0}, 00) = {



Infrared sensitive operator

We have to introduce an ultraviolet cutoff to capture only the IR part of the amplitudes. At first order level in the real
graphs it is just a cut on an infrared sensitive variable of the splitting:

OG (I B [ metnns {€ny; 115) ~ O(KT < pu3)
Transverse momentum ordering
{ { { ]

The singular surfaces may not extend outside of the
unresolved region.

k1 >

There can be no naked singularity!
“Resolved region” !

1
Y = 5(1 —cos 0 m+1)

Emission angle of the emitted parton

Energy of the emitted parton



Unresolved regions of LC+and soft operators

We define the unresolved regions differently in the LC+ and “soft” terms:
1 —

DL, () o [1 = 0(9Q* > 113)0((1 — 2)Q* > 1i2)] Dot (i) o< [1 = 0((1 = 2)Q% > 17)]

Depends only on the energy scale, since we

Depends on both scales since we have soft and , . . "
don't have collinear singularities.

collinear singularities.
. . 1 —
Unresolved region in Dio]ft(u)

ian i I
Unresolved region in Dy (i)

1 ‘ , 1 ,
|‘ " l| 2 2 'l
! ,' | /’LE/Q "
SE . 2/n2 : 0.8 &> ’
O 8 | ILLE/Q " 1 "
+—> . | .
0.6 : oo N :
£ 1 | = |

> 5 '1 B _‘E ,'
04| & 15/ Q7 | 04| & |
= , £ |

U’ 1 ‘b !

x\\ 1 & 1

O\ ,' O ,

0.2 w\\ 0.2 w\\ . ! .ll
' K No collinear singularity

) near singularity . | e
Yy 0 | |
0.6 0.8 1 0 0.2 0.4 0.6 0.8
1—2z

0 0.2 0.4



Parton shower evolution

Now, the shower operator is a exponentiated contour integral of the splitting kernels between the hard and soft scales.

- As long as we work at all order it is independent of the
chosen contour.

- At finite order the error is always higher order. Thus at a
given order of accuracy the shower is still independent of
the contour.

- Proof is in the paper.
- Now, we have three scales, i = (jic, fbg, Mir):

- Mo is sensitive for the collinear splitting (9, &, . A, ...)

- pg is sensitive in the soft region (1 — 2, E, ...)
- Mir is the scale only for the 177 terms
- Choose your contour

Ults ) = Texp{— /t t dt [d“ gft) So(ii) + 2ol s, 7)1 i im () Sm(ﬁ)] }



Parton shower evolution

With this three segment path the shower cross section factorizes as

This is basically the usual LC+ shower evolution
- Full collinear physics is considered.

- Some soft radiation is considered.

- Simple in colour, and relative easy to implement

7\
7 N\

o[0,] = (HTexp{—m /2 " g dpin () &Aﬁ)} 0, Texp{— /1 S e ® Scw)} Texp{— /O 1 dtd“E(t)sE(ﬁ)} V(i) F () | (7))

dt dt dt
=(1]
This is the soft shower operator

Glauber/Coulomb gluon effect - No collinear physics
- It completely drops out, since (1|Six (/) = 0. - Only wide angle soft radiations
- This means it is a genuine higher order effect, - Complicated in colour, but it always acts on the

and from the first order shower it can be hard state.

“transformed out”. - It can be implemented perturbative in the general
- Maybe this is the reason why we didn’t find big case.

effect when it was implemented interleaved with the - For Drell-Yan process this is a unit operator.

other kernels.

There is no surprise here, the structure is very similar to that we had in e+e- case. But here we have to pay attention to
the PDF operator F(ur) and the inclusive splitting operator V(i) .



PDF renormalization

The bare PDF need to be renormalised:

Defines the factorization scheme
- Finite operator in d=4 dimension
- Unit operator in MSbar scheme

~— g (ﬂR)

Fiare = [Fpn) 0 K(pn) 0 Zr () | = Flpuw) + =5

Usual MS poles

When this operator acts on a basis state it might have more familiar expression:

Foare[{0s Fim) = {02 F1on) [fa<na,uR>fb<nb,u§>

2 L g
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2 1
+ fa(na,uR)aS(MR) Z/O % (Kb’b’(z’“f%) T EL_P,,,,,, (2)) fo (nb/z,ui)] +-
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Inclusive splitting operator

After cancelling all the singularities and choosing the renormalization scale as 12 = 2, we have found

V() = [FoaeeD ()] F (1)

|t vanishes in the i, m | — O limit. ~~
- Complicated in color - Finite operator
- It can be exponentiated - Doesn’t change the number of

partons and their flavours

N\
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V(2 {ptm) = Py (2 {p}m)

+ Koar (2, 1) + {1553 (Z)} ot [P aa (2) log (maX {wC(Z) ’ u_; }> ] st

\

~"

It remains finite in the i, m — Olimit.

; ; We must change the PDF factorization scheme.

2
Koo (2, 12) = — [PCSZ),(Z) + P, (2) log (max {wc(z) : m—;})]
Hr MSR
The factorization scheme depends on the ordering of the shower

(1 for k| ordering, ¢ =1

we(z) = (1 —2)ry  for A ordering, c = A

(1 —2)?/z for angular ordering, ¢ =9



Shower dependent PDF

This leads to the following DGLAP equation:

da ) f2{ S ]?{ 1d ~
TG = S [ P (D0 > )]0/

One should do a full PDF fit with shower oriented PDF schemes. It is rather unlikely that it will happen in my lifetime,
thus it might be a better approach to relate the shower oriented PDF to the MSbar one.

w Transverse momentum ordering almost corresponds to MSbar PDF. Only the Pc(fg(Z) needs to be included, but
it is rather negligible.

w Parameterising the ordering schemes by a continuous parameter A, we can relate the corresponding PDF by
solving :

d a 9 12{7 )\ S 12% ' dZ 5
! (ndf ) = Q(Iu | ;/0 2 [IOg(l — 2)Paar (2)0((1 — Z)A/’Lg > mJ—)]MSRfa, (n/2, 'u?" A)

T

w A = 0 is almost the MSbar PDF and that is our boundary condition.
w A =1 gives the PDF for A-ordered shower.

w ] = 2 gives the PDF for angular ordered shower.
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1 fusp (0, 1)

Shower oriented PDF

up-quark distribution, u ~ 50 GeV
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Threshold logarithms

The inclusive spitting operator can be exponentiated and it sums up the threshold logarithms.

. . L o . ﬁH ~ Q
V(i) = V(i) Uy (fit, fin) = Uy ([, fin) since i ~ 1GeV
~1
Here the evolution operator is
, . . > 1, AV
i i) = Texpd [ ait-Son} Sl =V @ B

With the shower oriented PDF we sum up some of the threshold logarithms with the PDF evolution, thus the full
threshold effects is given as

Uy (ﬁfa ﬁH)‘F(/’LR(ﬁH))‘FM;Sl (NR(/jH))

We can test this by calculating the rate of the total cross section for Drell-Yan process,

(HUV(ﬁf?/ZH)F(MR(IEH))‘IOH)
(1| Frs (pm (7)) | o)
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Threshold logarithms

The inclusive spitting operator can be exponentiated and it sums up the threshold logarithms.

Drell-Yan cross sections, ratios to Born
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Conclusion, Outlook

> We generalised the concept of the ordering in parton shower algorithms by using multiple variables to define the
resolved and unresolved phase space regions.

> This could be very useful in the NLO and higher order shower, where the structure of the singular surfaces is more
complicate.

> In this framework an angular ordered dipole shower makes perfect sense.

> With three scales we can significantly simplify the colour evolution.

> From the first order shower the 17 can be eliminated completely
> With initial state parton we have to take care about the PDF. MSbar PDF is not good for everything.

> The PDF factorization scheme depends on the ordering.

> This is important since we have to match the DGLAP evolution to the evolution of the PDF in the parton shower
> From theory point of view every ordering is good as long as it obeys the “no naked singularity principle”.

> As long as we work at “all order” level every ordering is accurate.

> This is not true anymore when the shower is only LO or NLO.

> We have lots of freedom in a LO shower framework, but we can achieve good accuracy for a certain class of
observables by choosing the ordering, mappings and partitioning wisely.

> Even the 17 effect can be consider by picking the ordering carefully and make sure that the 17 operator is
interleaved with the standard shower generators “correctly”. Of course it is observable dependent.



Inclusive splitting operator

The inclusive splitting operator is a finite operator only in the colour space:

V() (0. £ Fon) = [

Ldz fa (Ma/ 7, ,LLR) ,
Fo(la 112) v (Z:APkm) + (@ & b)] {p. fre.c b)) +

Contributions of the real emissions
- Integrated over the unresolved region
- Singular operator

LPa,a/(Z) -+ rpa,a’ (Zv {p}?”fw ) + 5“ a’5(1 B Z) ({p}m’ ) ]

€MS

Vit (2 {phn) = 0 | Koy (2, ) +

Contributions of the virtual graphs
- Singular operator

The real and virtual poles (soft and collinear) cancel each others and the finite part of the virtual operator is fixed
by the momentum sum rule,

Z/O dzz2Paar (2, {P}m €) + T ({P}hm, €) = 0

Or with fancy notation we have

Py o (z,Ap}tm, €) = [Pa,a’(za {p}m. 6)]MSR = Pa,a’(za {Ptm,€) = 0a,a6(1 — 2) Z/O dZZPC,a/(Z, {p}m,€)



Inclusive splitting operator

The inclusive slittina onerator is a finite eperator onlv in the colour space: ...

Even fancier notation:

V()|
| [Aa,a’ (Z, {p}m)] MSR Aaa’ (Za {p}m) y @
and
v 1

a’aé [Aaa(z; {p}m)]MSR - ; [Z Aaa( {p}m 1 — Z Z/ 1 ZACG {p}m) | ]

The real and virtual poles (soft and collinear) cancel each others and the finite part of the virtual operator is fixed
by the momentum sum rule,

Z/O dzz2Paar (2, {P}m €) + T ({P}hm, €) = 0

Or with fancy notation we have

Py o (z,Ap}tm, €) = [Pa,a’(za {p}m. 6)]MSR = Pa,a’(za {Ptm,€) = 0a,a6(1 — 2) Z/O dZZPC,a/(Z, {p}m,€)



