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EuXFEL Instruments cover a vast range of experiments with widely 
varying conditions

→ For certain operation conditions, we may need more tailored tools

Take XPCS: X-Ray Photon Correlation Spectroscopy

– Based on Speckle
– Speckle patterns change stochastically with dynamics 

– Autocorrelation reveals the driving dynamics

Characteristic conditions:

– Very often very low count rates, ~10-2 ph/pix/pulse; → many runs 
for good statistics

– Analysis requires temporal autocorrelation function

Case Study: XPCS Experiments

 

Laser-pointer speckle

Two-time correlation function
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A) The Calibration Pipeline for AGIPD is very good, but it

– i) General Purpose, based on batch processing and 
calibration management

– ii) Struggles with some quirks of the detector, like 
flickering baselines

– iii) Resource intense

– iv) Stores dense proc data (compression ratio: 1) when 
the number of zeros ~(1-λ)

B) We currently cannot get temporal correlations live

Missed Opportunities in the Current Process
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Ad 1) Wobbling Baselines
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What does AGIPD Raw Data look like at Low Intensities?

Single-photon resolution up to k~4 or so

“Every statistical model is wrong”. Here is how I get it wrong.

– Convolution: Poisson ٭ Gaussian 

– → Everything from exponential family

– Gain a, offset b, count rate λ, (fixed) width σ

0      1     2 photons

F (x ,a ,b ,λ ,σ)=∑
k
N∗P (λ , k )∗exp {−( x−(ak+b)

aσ )
2

}

P (λ , k )= λk
k !
e−λ
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How Do We Fit the Model (without Histograms)?

The Maximum-Likelihood principle tells us how; Maximize the likelihood function:

Requires gradients and many iterations.

Even better: Expectation Maximization

– Idea: There must be a latent variable; here: photon count k

We can decompose                                                  to get the likelihood functionF (x i ,a ,b ,λ ,σ)=∑
k
f k (θ , x i)

L(θ , x)=∏
i

n

F (xi ,a , b ,λ ,σ)

L(θ , x ,k )=∏
i

n

∏
k
f k (θ , x)



9Streaming Algorithms for AGIPD Felix Brausse, MID, Jan. 25th 2022

How Do We Fit the Model (without Histograms)?

Now we can optimize each component individually; using the weights 

                              we can use the Maximum-Likelihood update for a Gaussian: the mean

Simplify even further: set maxk {Ti,k} to 1, the rest to 0

– → “The-Winner-Takes-It-All” Flavor

T i , k=
f k(θ , xi)

∑
k
f k(θ , xi)

μk
(t+1)=

∑
i
T i ,k xi

∑
i
T i ,k

(this is the k-means algorithm!)(this looks like a softmax!)
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Problem: We Need a Starting Guess
Solution: Look at the Mode (Most Frequent Element)

For λ < 1 the mode is always 0.

For n data points we have to reserve n 
memories + n counters worst case

Special case of 1 memory: the Boyer-Moore 
Majority-Vote Algorithm

mode

floor 
division

→ Extend majority vote to k memories

SpaceSaving(k) works really well for k = 2
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Putting it all together

B U F F E R 1

Mode increment MODE UPDATE

Guess offset

B U F F E R 2

Mode increment

Photon Counting, Stream Compaction

B U F F E R 2

Expectaction-Maximization increment EXP-MAX UPDATE

Determine gain and offset

For each train:                                                                                                 Every 20 trains:       

Incoming image
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Let Us Look At Some Code

Iteration of the SpaceSaving(2) 

~20x faster
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Let’s Look at It in Action

(video)

Overall performance: Mode and Exp-Max ~300Hz

Memory bandwidth → ~100 Hz

Reading from storage → 30 Hz max
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Ad 2) Storage Requirements
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AGIPD Data Compression

Let’s skip algorithmic compression

Raw data: 2x 16 bit / pix (intensity + gain)

Proc data: 32 bit float

Strategy A: Bitpack into 

8 x 4 bit (ratio 8)

Strategy B: Sparse pixels (index + count)

Strategy C: Sparse events (16bit index only)

B and C can be implemented efficiently through 
prefix sums

B and C offer savings in sparse algorithms
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Ad 3) Online Analysis
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Results for Silica Particles

Proper analysis: Whole AGIPD geometry, define circles of like q

Calculate Two-Time Correlation Function from Outer Product

Super efficient with `einsum`, even better with cuTensor 

BUT also extremely fast on multi-core CPU (OpenMP)

(video)

C i , j=A i∗A j

All analysis by Johannes Möller
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Summary

GPUs can do a wonderful job for us!

With the protoype of a streaming data-processing pipeline, three issues were addressed 

Shifting and flickering baselines in the AGIPD calibration

Suppression of zeros

On-line calculation of correlation

10 Hz (live) performance is easily within reach

Depending on features >100Hz operation possible
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