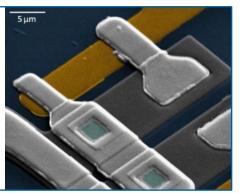


RESEARCH FOR GRAND CHALLENGES

Detector Technologies and Systems (DTS) Summary

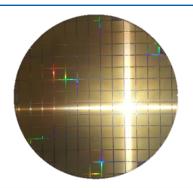

M. Weber, S. Masciocchi


ST1 – Detection and Measurement

DTS excels in sensors and ASICs

Superconducting sensors

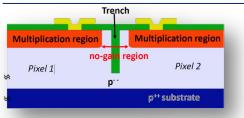
A mature technology with broad applications, ideal fit to Helmholtz


Post-processing silicon sensors

High quantum efficiency for soft X-rays, sensors tailored to specific application

High-Z semiconductor sensors

High quantum efficiency for hard X-rays

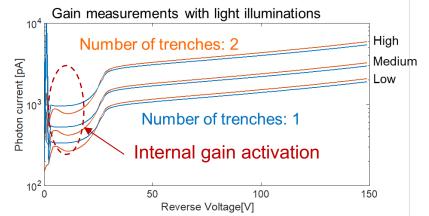

Innovative ASIC technology

Highest integration density, radiationtolerance, speed few technologies, many applications

HELMHOLTZ

ST1 – LGAD Hybrid Sensors

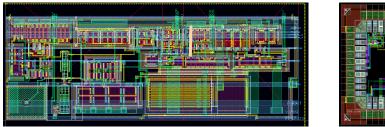
Silicon sensor for greater time, energy, and position resolution

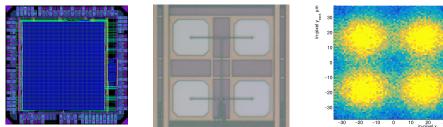


 Development of segmented low-gain avalanche diodes (LGAD): small pixels, high fill-factor, time resolution down to tens of ps, edgeless design

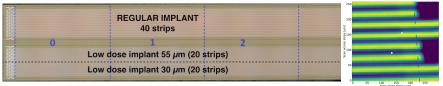
Trench-isolated LGAD structure

- 18 wafers produced with different process and layout options
- Technology and layout design rules characterized


Poster session: M. Patil


- Milestone DTS-2: Establish availability of sensors with high spatial (20 µm) and time resolution (20 ps) for charged particles (2024)
- Ready for an engineering run

ST1 – MAPS & CMOS Sensor Activities Tangerine, H2M, dSiPM, passive CMOS Strips



Status: 1st Prototype successfully tested, 2nd to be submitted

Status: Prototype successfully tested, evaluation in progress

Status: First batch tested, irradiation campaign ongoing

65-nm CIS from TPSCo foundry

- Charge-sensitive amplifier with Krummenacher feedback & discriminator, size: 35 x 15 μm² / 145 μV/e- / 35 e-
- H2M (CERN, DESY) & Tangerine (Helmholtz Innovation Pool)

DTS Talk: M. A. Del Rio Viera

150-nm CIS from LFoundry

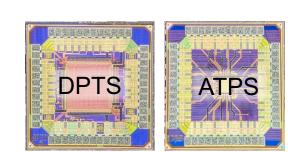
- 32-by-32 pixel matrix with 4 SPADs each and global 12-bit TDC per quadrant
- 70 x 76 µm² / digital / kHz DCR / ~100 ps resolution
- Follow-up Project on DTS Common Fund 2014

150-nm from LFoundry

DTS Talk: I. Diehl

- Sensor-only design with strips of different lengths
- Exercise stitching, evaluation of commercial CMOS process for HEP sensor production, irradiation study

MT Annual Meeting, September 2022

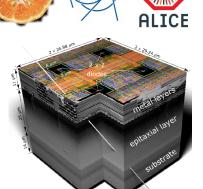

ST1 – ALPIDE (Monolithic Active Pixel Sensor for the ALICE ITS3)

Test structures thoroughly investigated, including radiation hardness

 Characterisation of neutron irradiated Digital Pixel Test Structures produced in 65 nm TPSCo CMOS process

DTS Talk: P. Becht

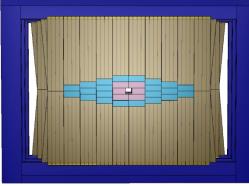
 Efficiency and spatial resolution of bent Monolithic Active Pixel Sensors measured with a 5.4 GeV electron beam


Pixel pitch: 10, 15, 20 and 25 μm 65-nm CIS from TPSCo

3 sensors (MAPS) wafer-scale (stitched) thinned to O(20-40) μm bent to cylindrical shape

5

DTS Talk: B. Blidaru



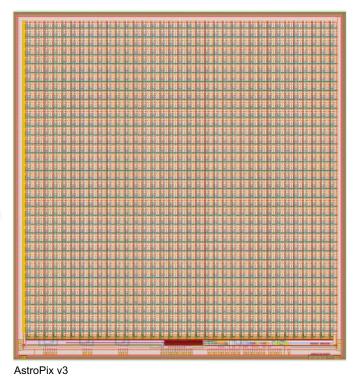
ST1 – MightyPix

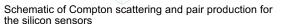
An HV-CMOS pixel chip for LHCb's Mighty Tracker

- Silicon sensors for inner part of proposed Mighty Tracker → radiation hard and good granularity
- First prototype MightyPix1
 - submitted to TSI in May 2022
 - Pixel matrix: 29 columns, 320 rows with 165 µm × 55 µm pixels
 - Simulations show MightyPix1 can already handle hit rate expected in hottest regions of Mighty Tracker

DTS Talk: S. Scherl

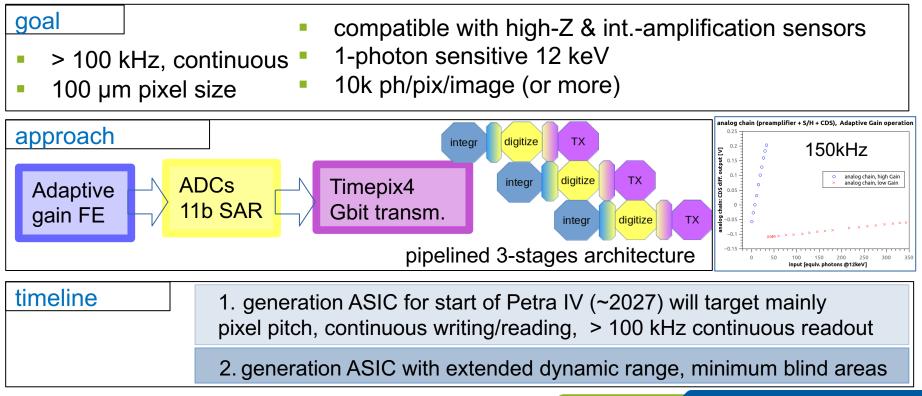
The Mighty Tracker: A hybrid of scintillating fibres (outer regions) and silicon sensors (inner regions)


ST1 – AstroPix


A novel HV-CMOS pixel sensor for experiments in space

- Silicon sensor for space Compton camera
- Iatest prototype: AstroPix v3
 - Full reticle size
 - 35 × 35 pixels
 - Low power consumption
 - High dynamic range

DTS Talk: N. Striebig



ST1 – Development of CoRDIA

An Imaging Detector for next-generation Photon Science X-ray Sources

HELMHOLTZ

Production and Development Center for High-resolution Superconducting Sensors

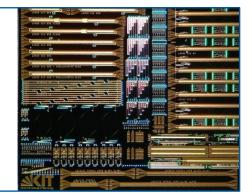
First superconducting niobium layer of a magnetic microcalorimeter array on a two-inch silicon wafer (fabricated with maskless aligner)

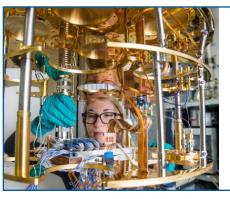
Maskless Aligner "MLA150" (Heidelberg Instruments GmbH)

- December 2021: Delivery to KIT
- January 2022: On-site acceptance and initial operation
- February 2022: Regular use for R&D activities
- Etching system "Plasma Pro[®]100 Cobra" (Oxford Instruments)
 - August 2022: Delivery to KIT
 - Current status: System installation by KIT staff
 - October 2022 (planned): On-site acceptance test
- Custom-built UHV-Sputtercluster (BESTEC GmbH)
 - September / October 2022: Design review + acceptance
 - August 2023 (planned): Factory acceptance test
 - October 2023 (planned): On-site acceptance test

In parallel:

- Process development on installed machines (supplemented by IMS deposition and etching systems)
- Procurement preparation of remaining devices / machines

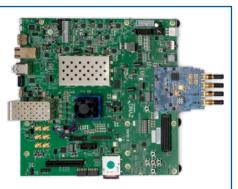

HSS is on schedule, first sensors expected early 2024


ST2 – System technologies

Critical technologies for coping with the data deluge

Silicon photonics

A game-changing technology, enabling trigger-less detectors



Cryogenic readout

Enabling 1k-pixel sensors, superconducting electronics spin-off: Quantum Computing

Real-time data acquisition

Scaling-up to Terabit/s, advanced algorithms, detector intelligence

Novel engineering techniques

High-density electronic integration, microfabrication, thermomechanical designs

ST2 – System Technologies

Key components for advanced detector systems

Core activities:

- Enabling optical communication for on-chip integration
- High-performance and intelligent DAQ systems
- Advancing packaging technologies

MT highlight:

- DAQ systems for Terabit per second data rates
- Multiple high-performance boards have been developed by the Helmholtz centers
- Next milestones:
 - 2022 Realize readout for cryogenic detectors with > 1000 channels
 - 2024 packaging for hybrid non-Si materials and 3D structures

I/O rate of 6 TB/s with Serenity A2577 for various CMS applications

ST2 – DAQ for next generation particle physics

Managing highest data rates and trigger at Tb/s

- Existing prototypes being optimized for 'production' versions of the board (~500 units)
- Designing two flavors with 1 and 2 FPGAs (Xilinx VU13P) sharing the same management infrastructure
- Planned adoption in multiple CMS Phase-2 sub-systems (e.g. Tracker, HGCAL, MTD, RPC, Trigger and possibly BRIL)
- Currently thoroughly testing the Samtec Firefly 25 Gb/s optical transceivers

Serenity-A ATCA Board

DTS Talk: T. Mehner DTS Talk: M. Fuchs

ST2 – DAQ for ECHo neutrino mass experiment

Electronics for readout of SQUID-multiplexed cryogenic sensors

- Successful operation of prototype with and w/o cryogenic sensors
- Full-scale hardware for processing of 800 sensors ready
 - Custom Converter-Board and RF-Frontend developed at KIT
 - Versatile FPGA-Board developed in cooperation DESY & KIT
- Ongoing topics and next steps:
 - Adaptation of the firmware to new hardware capabilities
 - Characterization and commissioning of hardware components
 - Improvement of measurement sensitivity

HELMHOLTZ

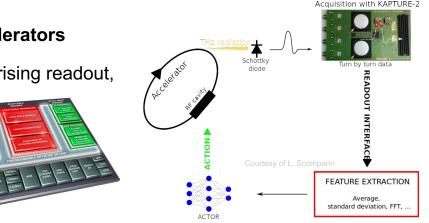
RF-Frontend

Converter board

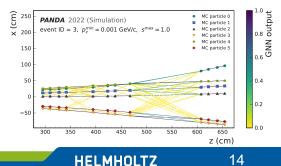
FPGA board DTS-100G

DTS Talk: T. Muscheid DTS Talk: J. Salum

ST2 – Artificial Intelligence


New platforms and applications

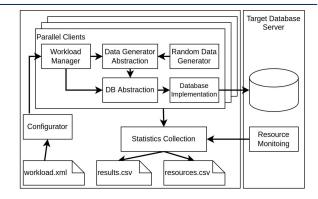
Reinforcement Learning for autonomous particle accelerators

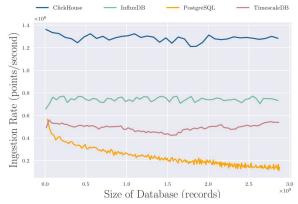

- Fast Neural Network inference (tens of µs latency comprising readout, inference and action)
- Novel Xilinx Versal ACAP platform
- ACCLAIM (Helmholtz Innovation Pool)
- Testing expected to start by end of year

Fast AI track reconstruction on FPGA for PANDA experiment

- Training of Interaction Networks for Graph classification
- Application to tracking in HEP detectors (e.g. PANDA)
- Tested performance of deployment on FPGA (collaboration with KIT-FZJ-GSI, master thesis of G. Heine)

Poster session: L. Scomparin


ST2 – Real-time data storage


SciTS – a tool to evaluation time-series databases (TSDB)

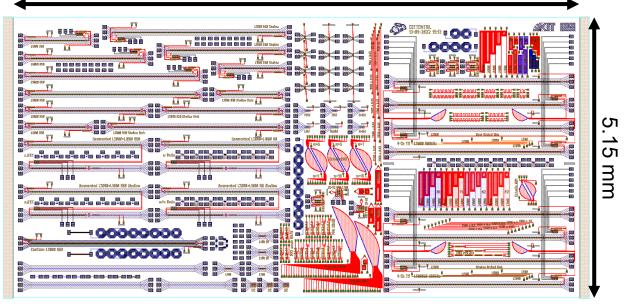
Goal: direct storage of DAQ data in database engines

- An evolution of TSDBs motivated by time-series special characteristics:
 - Indexed by its corresponding timestamps
 - Continuously expanding in size
 - Usually aggregated, down-sampled, and/or queried in ranges
 - has very write-intensive requirements
- SciTS is a benchmark for TSDBs in large-scale experiments and industrial IoT
 - Motivated by experiences in the KATRIN experiment
 - Parameterizable ingestion workloads & 5 practical query workloads based on our study of data management tools in scientific experiments

https://github.com/jalalmostafa/scits

ST2 – Optical Communication

Silicon photonics

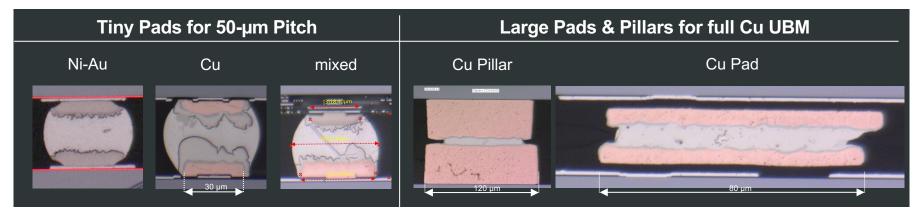

• New silicon photonic chip 'Cottontail':

- Layout almost finished for fabrication at imec, Belgium
- Driver electronics:
 - GUI for easy and clear parameter setup under progress
- Fiber-chip coupling:
 - Recipe to prepare anglepolished, polarizationmaintaining (PM) fibers formulated

Poster: M. Schneider

Cottontail: <u>Chip for detector instrumentation</u> with wavelength division multiplex

10.45 mm

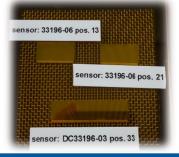


HELMHOLTZ

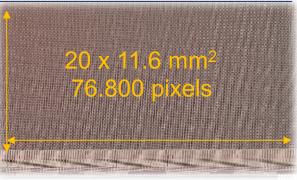
ST2 – Packaging Technologies at DESY

Cleaning, Bumping, Mounting & Reflow

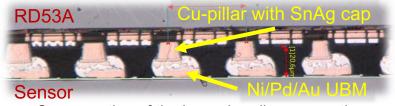
To probe further: https://indico.scc.kit.edu/event/2678/contributions/10080/attachments/4931/7455/Flip_Chip_Packaging_DESY.pdf


- CMS-Pixel Luminosity Telescope modules successfully mounted
- All processes for fast prototyping available in-house
- Paper with processes & results to be submitted to MDPI Materials

ST2 – Bump-Bonding of CMS pixels for phase 2 upgrade


High-granularity and large-area bump-bonding technology

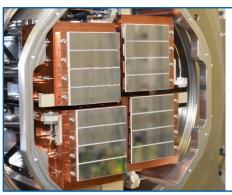
Toward to the production of the next pixel detector of CMS experiment


- Large active area and high-density technology with 33 kpixel/cm², pixel pitch of 50 µm
- Femto flip-chip bonder machine successfully upgraded to manage large devices
- Bonding process based on *solid-to-liquid* thermocompression with *reflow* in-situ by formic acid

 First delivery: two singles and one-double assemblies sent to Hamburg for the electrical test and feedbacks

RD53A front-end ASIC (pre-production)

Cross-section of the bump-bonding connection


ST3 – Science systems

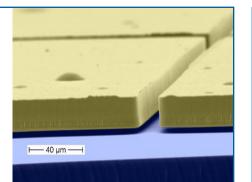
Build and characterize demonstrator systems ready for science

Particle physics

Ultra-low material silicon detectors with excellent time and spatial resolution

Photon Science

Megapixel detectors for soft X-rays, high-Z detectors, MHz- frame rates



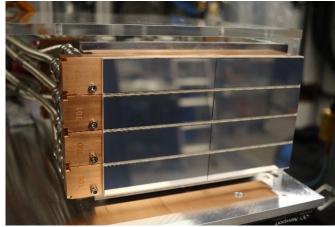
MU

Astroparticle physics

Cryogenic detectors of unique energy resolution for dark matter searches and neutrino physics

Beam physics

Multi-spectral THz detectors for beam diagnostics, 6D THz camera

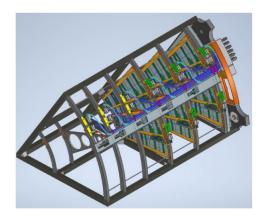


HELMHOLTZ

ST3 – Science Systems: Photon Science

AGIPD – Adaptive Gain Integrating Pixel Detector

- AGIPD 1.2 frontend modules in production for 1M channel systems at EuXFEL
- AGIPD1.2 ASIC fixes gain encoding of AGIPD 1.1
- Development of 2nd generation AGIPD systems
 - 0.5 Mpix prototype system in user operation at EuXFEL
 - Cooling system simulations completed and prototypes of core components successfully tested
 - new readout board in production
 - Electron-collecting version of AGIPD for high-Z sensors in production (AGIPD 1.3)



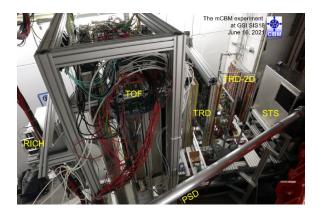
0.5 Mpix 2nd generation AGIPD prototype

ST3 – End Cap of ATLAS Inner Tracker (ITk)

System test a vital step towards detector production for LHC

- segment of mechanical structure
- possiblility to test up to 12 petals
- all mechanics and services as in final experiment (power, cooling, control)
- structure is ready installation in laboratory ongoing

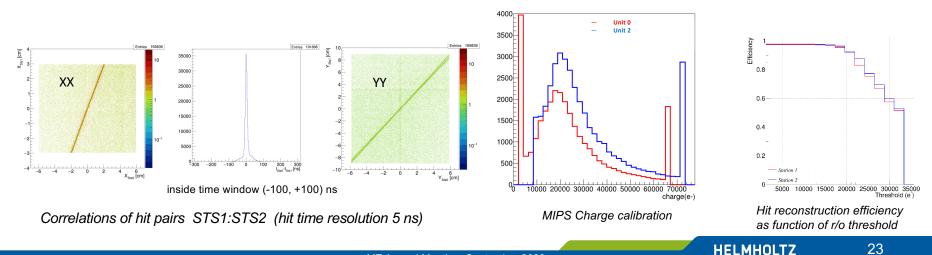
21


HELMHOLTZ

ST3 – mSTS demonstrator for CBM experiment @ FAIR

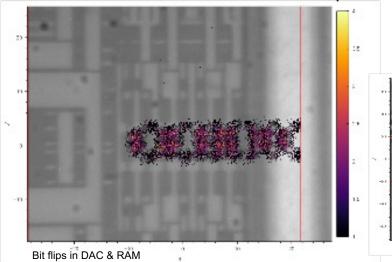
Mini-Silicon Tracking System completed in 2021

- prototype STS system of two tracking layers with 11 modules
- operation in O+Ni collisions at 2 AGeV @SIS19 (10¹⁰ ions per spill, ~ 500 kHz interaction rate)
- combined with other CBM demonstrator systems: mMUCH, mTRD, mTOF, mRICH, T0, free-stream DAQ to online Computing Center GreenCube



ST3 – mSTS demonstrator

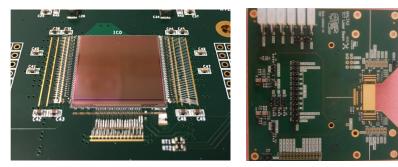
Demonstrator is fully operational

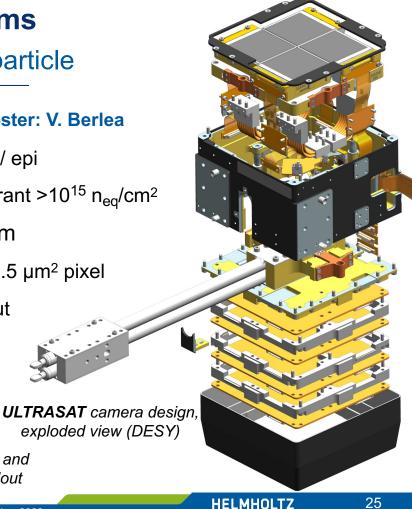

- Hit maps looking excellent, few r/o ASIC and individual channels missing
- first performance results match expectation ... see <u>CBM Progress Report 2021</u>
- much more to come with data from mCBM campaign 2022

ST3 – CBM MIMOSIS-Sensor at the GSI Micro-Beam

Single-event Effect Testing and Localization

- Bit flips in DAC & RAM
- Individual ion impact in vacuum with 3.6 to 11.4 MeV/u
- Beam focus 500 nm
- Pencil beam scan window 655 x 662 µm²

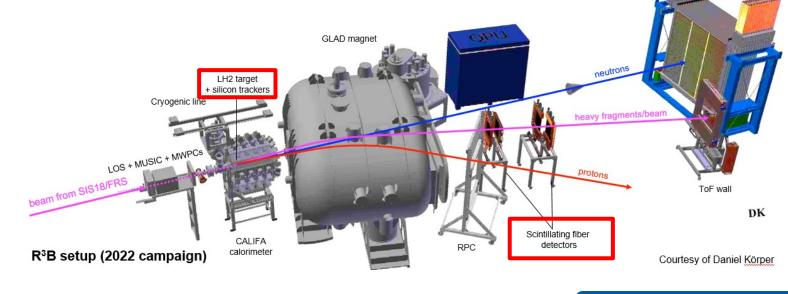




ST3 – From Pixel Sensors to Systems

MAPS sensor R&D for particle and astroparticle

- MALTA2: MAPS sensor R&D DTS Talk + Poster: V. Berlea
 - Tower Semiconductor 180nm modified process w/ epi
 - tracking/vertexing, 36.4 x 36.4 μm² pixel, rad tolerant >10¹⁵ n_{eq}/cm²
- ULTRASAT: UV MAPS satellite camera system
 - stitched 4.7x5 cm² backside-illuminated sensor, 9.5 μm² pixel
 - 90 Mpixel array w/ custom mechanics and readout

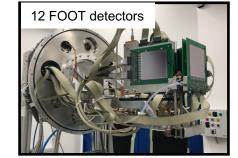

MALTA2 sensor and Edge-TCT readout

ST3 – New Detector Systems @ \mathbb{R}^3B

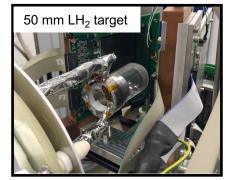
Experimental setup for studies of Reactions with Relativistic Radioactive Beams

GSI

 A versatile reaction setup with high efficiency, acceptance and resolution for kinematically complete measurements of reactions with high-energy radioactive beams.



HELMHOLTZ

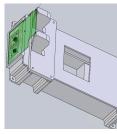

HELMHOLTZ

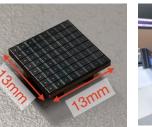
ST3 – New Silicon Tracker @ RB FragmentatioOn Of Target Experiment (FOOT)

- Tracking recoil protons from target e.g. from (p,2p) reactions and heavy fragments
- HAMAMATSU single-sided sensors, 50 μm strip pitch, 150 μm thick, 640 channels
- Original development of FE and DAQ by INFN group from Perugia
- FE board contains:
 - 10 charge-sensitive ASICs IDE1140 (IDEAS, Norway)
 - AC-coupled, pulse height proportional to the input charge
 - 64 strips bonded to a single ASIC
 - Buffer amplifiers
- First prototypes at GSI: June 2021
- First beam test in Jülich: October 2021

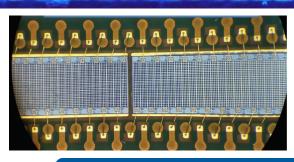
Two-arm FOOT configuration in 2022 experiments:

ST3 – Scintillating Fiber Systems @ RB


Detector Production


- First prototypes started in 2017
- First series in 2019, so far all with MAPMT
- For 2021 beamtimes we improved:
 - fiber ribbon production
 - mechanical design
 - dedicated readout

C. Caesar, D. Savran, M. Heil, H. Heggen for the R3B collaboration


ongoing: development using "SiPMs" 1d array and Matrix

prototype with 128 channel FPGA TDC tested succesfully in GSI beam time in 2022

SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

- Intense preparation by DDL team
- Inspired talk by Heinz Graafsma

www.helmholtz.de

DDL für Helmholtz und Gesellschaft

Beispiel: Kryogene Sensoren und SQUIDs (KIT)

Forschung mit extrem empfindlichen Detektoren

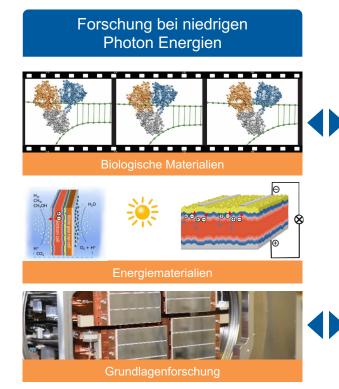
Dunkle Materie

Präzisionsspektroskopie

- eV Energieauflösung
- ns Timing
- einzelne Quanten
- Megapixel

DDL-Infrastrukturen

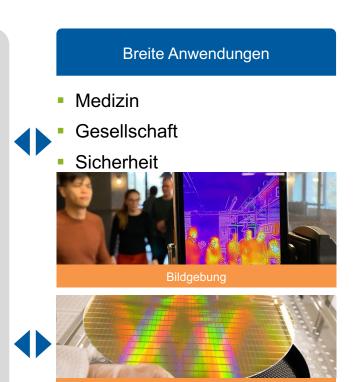
Mikrostrukturierungstechnik


Breite Anwendungen

- Metrologie
- Rohstoffsuche
 - Medizintechnik
 - Quantentechnologien

DDL für Helmholtz und Gesellschaft

Beispiel: Silicon post-processing (DESY)



- < 500 eV Röntgen</p>
- 100 Megapixel
- Quantensprung in Sensitivität

DDL-Infrastrukturen

Silicon post-processing

Mikroelektronik

#	Milestone	ST	Year	Center
7	Realize scalable readout technologies for pixelated cryogenic detector systems with > 1000 channels	2	2022	KIT
11	Evaluate the performance of a Compton detector in the high keV-low MeV regime	3	2022	DESY, GSI, KIT
8	Validate integrated microchannel cooling structures	2	2023	DESY, GSI
2	Establish availability of sensors with high spatial (20 $\mu\text{m})$ and time resolution (20 ps) for charged particles	1	2024	DESY, GSI, KIT
3	Develop a readout ASIC family for combined space, time, and energy measurement	1	2024	DESY, KIT
9	Establish packaging technologies for hybrid detectors with non-Si materials and 3D structures	2	2024	DESY, GSI, KIT
12	Assemble silicon beam telescope system demonstrating at the same time ultrafast timing, high spatial resolution, and ultra-low X/X_0	3	2024	DESY, GSI, KIT
1	Establish and commission the Distributed Detector Laboratory	1-3	2025	DESY, GSI, KIT
4	Develop a high-rate pixel readout ASIC for diffraction-limited synchrotron sources and future FELs	1	2025	DESY
5	Establish silicon photonics system components for optical data transmission	1,2	2025	DESY, KIT
13	Operate routinely a 1k-pixel cryogenic MMC sensor array for precision QED tests at CRYRING	3	2025	GSI, KIT
14	Provide pixelated THz detector combining spectral, space and time measurement for beam diagnostics	3	2025	KIT
6	Establish availability of high-performance sensors covering the entire X-ray spectrum	1	2026	DESY, KIT
15	Bring into operation a highly granular 5D (position, time, energy) calorimeter prototype with SiPM readout	3	2026	DESY, KIT
10	Assemble an intelligent terabit data acquisition and processing platform for advanced algorithms	2	2027	DESY, KIT
16	Demonstrate hybrid pixel system capable of matching CW-FEL bunch rates with advanced (optical) data transmission	3	2027	DESY, KIT

Summary

- It is so great to see you all in person again!
- We need more of these meetings, even if our way of working has changed.
- Again, there is a wealth of results and huge progress.
- Next evaluation will largely be based on our work in the next 2.5 years: completion of milestones, delivery of projects, collaboration and vision for the future.
- The DDL proposal is waiting for the final decision of the Helmholtz Senate in October

Thank you!!