

Stanford University

A Quarter-Wave-Resonator based SRF Gun for the LCLS-II High Energy project

Rong Xiang MT annual meeting , Sep 26 – 27, 2022, DESY Hamburg

Rong Xiang I HZDR

Outline

- 1. Background
- 2. Status of LCLS-II HE SRF gun
- 3. Roadmap

Rong Xiang I HZDR

1. Background SRF guns concepts for CW high brightness beam

KEK SRF gun

HZB SRF gun

PKU DC SRF gun

Member of the Helmholtz Association Rong Xiang | HZDR

1. Background

SLAC is going to build a **low emittance LCLS-II-HE Injector (LEI)** to extend photon energy range of XFEL, enabling broader photon physics program.

LCLS-II-HE SRF gun design parameters

Parameters	Final Design Value
cavity frequency	185.7 MHz
cathode field	30 MV/m
photo-cathode	Alkali Antimonide
bunch charge	100 pC
Emittance @ 100 MeV	< 0.1 µm @ 100pC
Laser flattop pulse length	10-30 ps

package

J. W. Lewellen, WEPA03, NAPAC 2022

- Preliminary design passed in April 2022
- Final design review will be in Oct. 2022
 - Cavity processing plan
 - Cryomodule, SC solenoid, coupler
 - Clean room assembly plan
 - RF, Cryogenic, vacuum, interface ...

superconducting solenoid

Y. Choi, April 2022 SRF Gun Preliminary Design Review, 7, Slide 6

185.7MHz SC Cavity

- Optimize field distribution
- Modify multipacting performance
- Stress calculation, manufacturability

B-field at E_c = 30 MV/m, B_{peak} = 52.9 mT

S. Miller, April 2022 SRF Gun Preliminary Design Review, 06, Slide

Cryomodule Design Based on FRIB Bottom-up Approach

- Room temperature strongback to ensure alignment
- Cryogenic system suspended from the top to decouple from cold mass and minimize cryogen induced microphonics
- Cavity and solenoid design to operate at 4K
- Unique 3-D vacuum vessel seal allows cold mass to be completely assembled in cleanroom including cathode stalk adjustment features

SRF Cavity Testing Approach

"Two-prong" testing:

- Type of test
 - VCM (MSU)
 - Horizontal "tank" test (Argonne)
 - Integrated into CM
- Device being tested
 - "Blank" cavity
 - Gun cavity w/ cathode system

Allows finer-grained and earlier identification and mitigation of problems, e.g. multipacting, manufacturing

- Bias 0-5 kV test
- RF Frequency and Filed distribution check.
- Thermal function test with heater.
- ~100W RF Test

T. Komoni, et al., MOPA87, NAPAC 2022

Cathode and load lock system

- Accurate, reliable
- Particle free operation
- Good vacuum 10⁻¹⁰ mbar
- Adaptable to different cathode materials

3. Roadmap for LCLS-II-HE injector

Acknowledgements

Collaborators in the LCLS-II-HE SRF gun project

- SLAC: C. Adolphsen, R. Coy, J. Fuhao, G. Hays, R. Legg, J. Lewellen,
 D. Li, G. Lixin, C. Mayes, C. Mitchell, M. Murphy, C-K Ng, Y.
 Nosochkov, T. Raubenheimer, M. Ross, M. Santana, X. Wang,
 M. Woodley, F. Zhou
- MSU/FRIB: C. Compton, Y. Choi, W. Hartung, S-h. Kim, S. Lidia, S.J. Miller, J. Popielarski, L. Popielarski, K. Saito, T. Xu
- HZDR: A. Arnold, S.Gatzmaga, S. Ma, P. Murcek, J. Teichert, R. Xiang
- Argonne: M. Kelly, P. Piot, Troy Peterson

Thank you!

Many thanks to Dr. John Lewellen, Dr. Ting Xu and other colleagues for the slides!

Beam Emittance vs. Mean Transverse Energy for LEI*

An S-20 photocathode (Cs₃Sb on Na₂KSb) with \sim 600 nm drive laser[†]

Substantial body of literature on photocathode performance

* Using 100 pC, 30 MV/m, "complex" injector config, doublet solenoid

⁺ Appl. Phys. Lett. 108, 134105 (2016); https://doi.org/10.1063/1.4945091

MTE	0 meV	25 meV	50 meV	100 meV	184 meV
100% emit	0.054 um	0.069 um	0.078 um	0.095 um	0.115 um
95% emit	0.037 um	0.052 um	0.059 um	0.075 um	0.093 um