

Superconducting quantum sensors

- enabling technology for next-generation physics experiments

Sebastian Kempf

8th Annual MT Meeting | DESY Hamburg | September 26th-27th, 2022

www.kit.edu

Cryogenic microcalorimeters

Magnetic microcalorimeters (MMCs)

Key features of magnetic microcalorimeters

outstanding interplay between ultra-sensitive paramagnetic thermometer and near-quantum limited superconducting electronics device

S. Kempf et al., J. Low Temp. Phys. 193 (2018) 365

Micro- and nanofabrication

The goal: Large-scale cryogenic detector arrays

some examples:

MPx to GPx X-ray cameras e.g. for synchrotrons, FELs, ...

light dark matter searches using superfluid helium

search for neutrinoless double beta decay (AMoRE)

neutrino mass investigation with sub-eV sensitivity

îM5

large-scale infrastructure to foster forefront research activities

Towards sub-eV energy resolution at eV...10's of keV

M. Krantz, PhD thesis, 2020 + in preparation

Towards sub-eV energy resolution at eV...10's of keV

M. Krantz, PhD thesis, 2020 + in preparation

operation of HDMSQ in two-stage SQUID setup with home-made amplifier SQUID arrays

Microwave SQUID Multiplexing

ECHoMUX - μ MUX for the ECHo experiment

D. Richter, PhD thesis, 2021 + in preparation

ECHoMUX - some results

64 pixel detector array connect to μ MUX (latest generation); full online demodulation

first truely multiplexing demonstration of magnetic microcalorimeters some issues still to be resolved (ongoing)

D. Richter, PhD thesis, 2021 + in preparation

X-ray spectroscopy

X-ray spectroscopy is a versatile tool that can be used for a variety of applications, e.g. HERFD, RIXS, XES, ...

count-rate / efficiency vs. resolution

J. Uhlig et al., J. Synchrotron Rad. 22 (2015) 766-775

Tender X-rays

applications of tender X-rays (as taken from NSLS-II website)

catalysis:

- materials (zeolites, thin films, nanomaterials)
- reaction mechanisms and intermediate species
- poisoning

energy materials:

- photovoltaic
- fuel cell
- battery and superconducting (nano) materials

environmental/earth science:

- biogeochemical and redox processes
- contaminant behavior and remediation

climate:

- terrestrial and marine C cycling
- carbonate mineralization
- geologic record of climate change

sustainability:

- nutrient (P, S, K, Ca, Mg, Fe) cycling
- transport and bioavailability
- biofuel/biomass productivity

J. Uhlig et al., J. Synchrotron Rad. 22 (2015) 766-775

Water window

resolution of conv. detectors sufficient, but quantum efficiency too low

J. Uhlig et al., J. Synchrotron Rad. 22 (2015) 766-775

water window

biomolecules (proteins, viruses, bacteria) are most studied in aqueous solution

Long-term goal - MMCs for photon sources

Replacement of commercial X-ray systems

semiconductor detectors

huge market for quantum sensors as replacement for semiconductor detectors due to significantly better resolution (about factor 100)

Energy-dispersive X-ray spectroscopy

X-ray fluorescence spectroscopy can be used for the identification / quantification of elements

Energy-dispersive X-ray spectroscopy

X-ray fluorescence spectroscopy can be used for the identification / quantification of elements ...but it can also be used for identification of the chemical speciation

identification of chemical speciation requires X-ray detectors with sub-5 eV (better: sub-1 eV) resolution

Energy-dispersive X-ray spectroscopy

X-ray fluorescence spectroscopy can be used for the identification / quantification of elements ...but it can also be used for identification of the chemical speciation

identification of chemical speciation requires X-ray detectors with sub-5 eV (better: sub-1 eV) resolution

Current direct WIMP search landscape

23 2022-09-27 8th Annual MT Meeting | DESY Hamburg

New avenues for light DM direct detection

Why superfluid liquid helium?

- very light
- cheap
- ultra-pure (no internal background)
- multiple signals (phonon & rotons, photons, excimers)
- NR / ER discrimination
- fiducialization possible
- easily scalable
- overall concept demonstrated

DELight: a Direct search Experiment for Light dark matter with superfluid helium

Belina von Krosigk, K. Eitel, C. Enss, T. Ferber, L. Gastaldo, F. Kahlhoefer, S. Kempf, M. Klute, S. Lindemann, M. Schumann, K. Valerius

DELight concept

DELight concept

Summary and conclusion

magnetic microcalorimeters and SQUIDs

- flexible low-temperature detectors
- described by standard equilibrium thermodynamics
- wide range of applications

future detector systems

- large-scale detector arrays by using SQUID multiplexing
- realization of resolving powers > 10.000
- ultra-fast detectors

future applications

- X-ray spectroscopy at modern light sources, QIT, ...
- muclear safeguards, medicine, ...
- material analysis, EDS, EDX, …
- particle and astroparticle physics

Superconducting quantum sensors

- enabling technology for next-generation physics experiments

Sebastian Kempf

8th Annual MT Meeting | DESY Hamburg | September 26th-27th, 2022

Thank you for your attention

www.kit.edu