

Institute for Data Processing and Electronics (IPE)

HV-CMOS Sensors for the Mu3e Experiment searching for Lepton-Flavor Violation

F. Ehrler, I. Perić

Physics beyond the Standard Model of particle physics?

- Lepton flavor is conserved in Standard Model
- The decay channel $\mu^+ \rightarrow e^+e^-e^+$ is only possible due to neutrino oscillations, with very small branching ratio (<10⁻⁵⁰). This is not observable.
- Any observation of this process is a proof for physics beyond the SM
- Mu3e detector is constructed to identify $\mu^+ \rightarrow e^+e^-e^+$ decay and to filter out all other events, especially neutrino background is challenging

The Mu3e experiment

- At Paul-Scherrer-Institute (Switzerland)
- Muons are created by an accelerator with a high rate of up to 10⁹ per second
- They are stopped in a Mylar target and decay
- The decay products are tracked and analyzed
- For background exclusion high precision measurement is required:
 - Vertex resolution ~100 μm
 - Time resolution 20 ns (pile-up)
 - Low material budget 0.1% of X₀/layer (multiple-scattering)

Monolithic HV-CMOS pixel sensor (2 cm)²

He-gas cooling → low energy consumption

The total number of sensorchips is 2844 with

Minimal support: Kapton foil with aluminum traces

Mu3e pixel tracker consists of central tracker (4 layers)

High spatial resolution: (80 μm)² pixels

and 2 recurl stations (2 layers each)

a total area of larger than 1.1m²

Time resolution better than 10ns

- High noise suppression

The MuPix sensor chip

Thickness ~50 μm

Layout of eight MuPix11 pixels

Schematic drawing of Middle section the Mu3e detector [2] Recurl section Mylar target

Recurl section

Layout of MuPix11

Thinned sensor chips on a wafer [3]

Laboratory test setup. The oscilloscope shows the chips response to a test signals (yellow) at amplifier output (blue) and comparator output (magenta) [4]

Our Mu3e research group

- Funded by DFG
- Development of pixel sensor chip
- Production of sensor chips
- Test and calibration of chips
- MuPix11 is the production version of the sensor chip
- Tests are ongoing, the first results are very good
- Development of sensor chips with improved time resolution for Mu3e upgrade
- Start of muon data taking is planned in 2024

- [1] A. Blondel et al., "Research Proposal for an Experiment to Search for the Decay $\mu \rightarrow$ eee", Jan. 2012.
- [2] K. Arndt, et al., "Technical design of the phase I Mu3e experiment", 2020.

Email: felix.ehrler@kit.edu

- [3] Picture by David Immig
- [4] H. Augustin, Mu3e collaboration meeting Sept. 2022