Introduction to Low Gain Avalanche Diodes

Annika Vauth

February 21, 2022 First High-D Consortium Meeting

Motivation

Particle physics at the high energy frontier: What comes beyond HL-LHC?

Future hadron colliders:

Challenges from very high luminosity operation

ightarrow extreme pile-up, track density, irradiation, data load

Central tracker requirements

Facility					
Parameter	HL-LHC	SPS	FCC-hh	FCC-ee	CLIC
Fluence $[n_{eq}/\text{cm}^2/y]$	10 ¹⁶	1017	10^{17}	$< 10^{10}$	$< 10^{11}$
Inn. tracker [m ²]	10	0.2	15	1	1
Out. tracker [m ²]	200	_	400	200	140
Pixel size [µm ²]	50×50	50×50	25×50	25×25	25×25
Time res [ps]	50	40	10	1k	5k

[doi.org/10.1016/j.nima.2020.164383]

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | High-D, 21.1.2022 | Introduction to LGADS

The need for new timing detectors

Experimental environments are evolving \rightarrow Include track timing to address new challenging conditions

Many use cases for fast timing detectors: Pileup-reduction at HL-LHC, ToF PID in Higgs factories, Fast X-ray detection, ...

Time information can be used to complement spatial information:

Timing layer:

timing in event reconstruction

 "4D" tracking: timing at each point along the track

Example

The need for new timing detectors

Experimental environments are evolving \rightarrow Include track timing to address new challenging conditions

Many use cases for fast timing detectors: Pileup-reduction at HL-LHC, ToF PID in Higgs factories, Fast X-ray detection, ...

Time information can be used to complement spatial information:

Timing layer:

timing in event reconstruction

 "4D" tracking: timing at each point along the track

Example with timing info

The need for new timing detectors

Experimental environments are evolving \rightarrow Include track timing to address new challenging conditions

Many use cases for fast timing detectors: Pileup-reduction at HL-LHC, ToF PID in Higgs factories, Fast X-ray detection, ...

Time information can be used to complement spatial information:

- Timing layer: timing in event reconstruction
- "4D" tracking:

timing at each point along the track

Low Gain Avalanche Diodes

Ultra Fast Silicon Detectors optimised for timing measurements:

- Thin multiplication layer
- \rightarrow High field
- \rightarrow Increase signal by factor ${\sim}10$

LGADs are routinely produced in various sizes and pad numbers (e.g. by CNM, FBK, HPK)

$\mathcal{O}(30\,\text{ps})$ time resolution possible

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$
arXiv:1704.08666

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$

Variation in time of arrival due to different signal amplitudes

Compensation: Constant Fraction Triggering or amplitude-based correction (TOT)

Time walk effect OE 56(3), 031224 (2017)

R TORSCHUNG | DER LEHRE | DER BLOUNG A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$

Caused by inhomogenities in drift velocity & weighting field

Compensation: saturated drift velocity & optimised geometry ("parallel plate") Time-to-digital converter contribution $\Delta T / \sqrt{12}$ (bin width)

in most cases small contribution

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$

Energy deposit Current fluctuations due to signal shape variations for MIP ionization

Time-Of-Arrival variations due to noise

- sensor noise
- · electronics noise
- slew rates (dV/dt)

= the main contributors \rightarrow low gain, thin detectors

Typical numbers: 20-30 ps time resolution

Conversität Hamburg A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

Why Low Gain?

High gain has many drawbacks: risk of breakdown, power consumption, higher noise

```
"Excess Noise Factor" (F): additional noise induced by the multiplication mechanism (gain not constant \rightarrow additional fluctuations in current)
F \sim G^{x}
```

signal after multiplication: multiplied by G current noise increases with \sqrt{F}

 \rightarrow S/N ratio deteriorates at higher gain

For a given ENF, there is an optimum gain (10 \sim 30)

Current fluctuations are due to statistics of MIP ionization

> For a fixed gain: amplitude of the signal independent of thickness d:

 $I_{max} \sim n_{eh-initial} \, G \, q \, v_{sat}$

arXiv:1704.08666

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

R&D Challenge: Fill Factor

Segmentation to improve spatial resolution

- Inter-pixel region: isolation and termination structures (p-stop, Junction Termination Extension, virtual GR)
- Carriers generated in this area not multiplied
- Interpad regions with no gain O(≈ 30 µm to 70 µm)
- \rightarrow R&D challenge:

Segmentation with improved fill factor

Several technology options:

- Trench-isolated LGAD
- Inverse LGAD
- Resistive AC-Coupled LGAD

Universität Hamburg A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

Standard segmentation

[G. Paternoster, 35th RD50 workshop, Nov 2019]

TI-LGAD

Trench isolation:

- JTE and p-stop replaced by trench to isolate the pixels
- Filled with Silicon Oxide
- Typical trench width < 1 μm much smaller wrt. JTE and p-stop
 - \rightarrow smaller no-gain region

1 Trench Layout (trench grid)

[G. Paternoster , 35th RD50 workshop, Nov 2019] Diversität Hamburg A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

2 Trenches Layout

TI-LGAD

IШ

Trench isolation:

- JTE and p-stop replaced by trench to isolate the pixels
- Filled with Silicon Oxide
- ► Typical trench width < 1 µm much smaller wrt. JTE and p-stop → smaller no-gain region

Layout	Nominal no-gain	Effective gain-loss
1 Trench	~ 4 um	~6 um
2 Trenches	~ 6 um	~3 um

[G. Paternoster, 35th RD50 workshop, Nov 2019]

Comparison of FBK productions: UFSD3 vs Trench-Isolated

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | High-D, 21.1.2022 | Introduction to LGADS

iLGAD

IШ

Inverse LGADs:

- No segmentation of the multiplication layer
- Hole collection
- Complex double side process (first generation)

LGAD TECHNOLOGY

[[]D. Flores, SIMDET '16, Sep 2016]

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

iLGAD

IШ

Inverse LGADs:

- No segmentation of the multiplication layer
- Hole collection
- Trenches to isolate the active area (third generation)
- Single-side process

[D. Flores, SIMDET '16, Sep 2016]

DER FORSCHUNG | DER REHGE | DER BEDUNG A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

iLGAD for Timing

To use iLGADs for timing applications \rightarrow Reduce the thickness of the detector CNM: fabrication with two different approache

- 1. Epitaxial wafer + epitaxial multiplication
- 2. Si-Si wafers + implanted multiplication

Resistive AC-Coupled LGAD

- Continuous resistive n+ implant
- Readout: AC-coupling through a dielectric layer
- Segmentation obtained by postion of the AC pads
 - \rightarrow 100% fill factor design

IШ

Resistive AC-Coupled LGAD (2)

Naturally leads to signal-sharing among the pads

 \rightarrow High position resolution even with "larger" pitch e.g. \sim 5 μm resolution with 200 μm pitch

Resistive AC-Coupled LGAD (2)

Naturally leads to signal-sharing among the pads

 \rightarrow High position resolution even with "larger" pitch e.g. \sim 5 μm resolution with 200 μm pitch

Charge sharing optimisation: Arrays (regular/staggered), Pad shape designs

charge sharing among pads

[doi.org/10.1016/j.nima.2021.165319]

Resistive AC-Coupled LGAD (2)

Naturally leads to signal-sharing among the pads

 \rightarrow High position resolution even with "larger" pitch e.g. \sim 5 μm resolution with 200 μm pitch

Charge sharing optimisation: Arrays (regular/staggered), Pad shape designs

Hit on pads: charge sharing only 10-20 μm from metal edge

Example: FBK RSD2 designs

[M. Mandurrino, 39th RD50 workshop]

DER FORSCHUNG | DER BLIDDING A. Vauth | High-D, 21.1.2022 | Introduction to LGADs

Irradiation causes three main effects:

- Decreased charge collection efficiency
- Increased leakage current
- Change of doping profile

Deactivation of p-doping by Boron removal \rightarrow Gain reduction due to irradiation

IШ

Lots of R&D ongoing, different doping profiles and ion implants:

Defect Engineering of the gain implant

- Carbon co-implantation in gain layer volume
- Boron as gain layer implant

Modification of gain layer profile

> Narrower doping layer with higher initial doping

More on radiation damage: See talk by Chuan Liao tomorrow afternoon

Example: Study for TOPSiDE

- HPK LGADs with 35 / 50 µm thickness
- > Time res up to \sim 25 ps
- With 3 layers: 14.3±1.5 ps

Example: Irradiation study for HGTD

- \blacktriangleright LGAD with 45 55 μm thickness
- Different vendors/implantations
- > ~40 ps time resolution after irradiation

Example: Study for TOPSiDE

- HPK LGADs with 35 / 50 µm thickness
- > Time res up to \sim 25 ps
- With 3 layers: 14.3±1.5 ps

Example: Irradiation study for HGTD

- \blacktriangleright LGAD with 45 55 μ m thickness
- Different vendors/implantations
- > ~40 ps time resolution after irradiation

Hamburg University LGAD projects (1)

HEP detector R&D: dedicated beam tests for conceptual / technical design, calibrations, commissioning, ...

ightarrow DESY II Testbeam Faciliy

Integral part of test beam infrastructure: Beam Telescopes Current EUDET-type telescopes: Six planes of MIMOSA26 sensors Intrinsic sensor resolution: $\sigma \cong 3 \,\mu m$

Rolling shutter readout, readout cycle 115 µs

Add faster device for time stamping the tracks \rightarrow LGAD timing layer

Hamburg University LGAD projects (2)

LGAD prototypes expected:

- TI-LGADs from FBK(*)
- i-LGADs from CMN

(*)received first test structures

Setups for characterisation existing / in preparation

- CV-IV measurements
- Beta-source setup for timing measurements
- TCT setup

. . .

Future plans: testbeam campaigns and irradiation studies

Summary & Outlook

- Low Gain Avalanche Diodes to measure both time and space - with improved signal-to-noise ratio
- For timing: 30-50 μm thickness, gain (*O*)(10)
- LGAD design: R&D ongoing on
 - radiation hardness (doping profile, ion implantats)
 - segmentation (Trench / Resistive AC / i-LGAD)
 - and more (uniformity, electronics, ...)
- Current University of Hamburg projects: beam telescope timing layer & radiation hardness studies

The future of timing: LGADs will find more and more applications in 4D-tracking

Backup Slides

AC LGAD Signal Formation

iLGAD Third Generation (iLG3): Fabrication Process

We are planning to carry out this fabrication with two different approaches:

- Epitaxial wafer + epitaxial multiplication 1.
- 2. Si-Si wafers + implanted multiplication

CS

10

Beta Timing Setup

UHH

DIVERSIGNATION OF REAL PROVIDED AND A CONTRACT OF RELEVANCE AND A CONTRACT OF REAL PROVIDED AND A CONTRACT OF REAL PROVIDA A CONTRACT OF REAL PROVIDANT A CONT

High-Granularity Timing Detector for phase 2 upgrade

Two endcap disks at $z=\pm 3.5 \text{ m}$

2 double-sided layers

30 ps TOF resolution for charged particles,, $1.3 \times 1.3 \text{ mm}^2$ pixels for occupancy <10%

 $6.3\,m^2$ active area

MIP Timing Detector timing layer between tracker and calorimeter

Barrel Timing Layer:

thin crystal (LYSO) + SiPM

Endcap Timing Layer in front of HGCal: LGAD

30 ps TOF resolution for charged particles $(\rho_{T} > 0.7\,GeV)$

7.9 m² sensor area/side

Signal	30ps Timing Benefits	Physics Impact	
Н → үү (*)	Photon isolation, vertex choice	+25% precision on cross-section	
VBF + H→ττ	Isolation, VBF tagging, ME_T resolution	+20% precision on cross-section	
HH	Isolation, b-tagging	+20% signal efficiency	
SUSY	Reduce MET tails	-40% irreducible BG	

- Benefits across many physics channels
 - Overall: +20-40% effective integrated lumi
- * New physics opportunities
 - Reconstruct mass of tracks (LLP, HSCP)
 - TOF PID: exclusive flavour physics in Pb-Pb

Francesco Pandolfi

