

Introduction to silicon tracking detectors

Christian Scharf

Humboldt University Berlin

1st High-D Consortium Meeting 2022

Introduction

Positron discovery In cloud chamber Carl Anderson 1932

Energetic charged particles loose energy by ionizing the medium they are traversing

Cloud chamber: Ions seed condensation of supersaturated vapor

In silicon we use the same principle but directly measure the charge created by ionization

Introduction Collider experiments

Vertex detectors (trackers) are located around the interaction point of collider experiments

Most widely used material for trackers is silicon

Introduction Requirements for high luminosity trackers

CMS event display w/ 50 pile-up events

HL-LHC: ~200 primary vertices per bunch crossing (pile-up)

In order to assign tracks to primary and secondary vertices we need

- Good spatial resolution (ATLAS: $\sim 10 \ \mu m \ r \phi$)
- High granularity (down to 25 µm channel pitch)

Introduction Requirements for high luminosity trackers

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf GMS Experimental LHC.CERN Data recorded: Mon Met 28 01:16:20/2012 CERT RunEvent: 195098/35408126 Umi.section: 65 Opt/Crossing: 16992111, 2295 Umi.section: 65

0.4ns 0.02ns

-0.12ns

0.15ns -0.05ns 0.2ns (define to be t=0)

Raw $\Sigma E_T \sim 2$ TeV 14 jets with $E_T \sim 40$ Estimated PU ~ 50

0.11ns

-0.11ns

Vertex reconstruction for high pile-up can be improve with timing detectors ("4D tracking")

Timing resolution of 20-30 ps would improve reconstruction

CMS event display w/ 50 pile-up events

Ionizing particles create free electron-hole pairs in semiconductor which drift to electrodes in applied el. field Why silicon?

- Low ionization energy: 3.6 eV/e-h, ~80 e-h/μm
- Fast signals: 100 µm/ns saturation velocity
- Availability of Si (8 km² wafers/yr) and technology!

Signal formation in silicon pn junction

Intrinsic Si carrier density

• $n = p = n_i \sim 10^{10} \text{ cm}^{-3}$

pn junction:

- Recombination of e and h leaves space charge region SCR
- Reverse bias leads to larger SCR
- SCR has high el. field and a very low free carrier density $n, p \ll n_i$

Ideal to use as low noise detection volume!

Radiation damage in silicon Defect creation

Energetic particles can knock atoms from their lattice position

- Cross section strongly depends on particle type and energy
- Knock-on atom forms Frenkel pair (vacancy-interstitial)
- Frenkel pairs are mobile in the lattice and can recombine or form new defects
- High energy knock-on atoms can create cluster defects with modified lattice

Radiation damage in silicon Effects on sensor operation

Most significant effects of radiationinduced defects are

Change of the effective doping concentration

- N_D decreases over time
- N_A first decreases and then increases
- Type inversion $n \rightarrow p$
- Loss of gain

Increase of thermal carrier generation

- Current in SCR increases
- Heats the sensors

Trapping of free carriers

- Carriers can only drift for short time
- Signal decreases

- Mainly used for outer trackers volume w/ $\Phi_{eq} < 10^{16}$ cm⁻²
- Sandwiched strip sensors with stereo angle can provide x-y tracking
- Read out by ASICs glued on sensor

Pros: Proven technology, high spatial resolution, large area, less channels 9 Cons: Suffers from oxide damage, complicated wire bonding, thick sensors

Silicon detectors Pixel sensors

- Mainly used for inner tracker volume w/ $\Phi_{eq} > 10^{16} \text{ cm}^{-2}$
- Pixel matrix directly provides x-y tracking
- Read out by ASICs bump bonded to sensor

Pros: High granularity, very good radiation hardness (3D), thin Cons: Complicated bump bonding, expensive, small sensors

Silicon detectors CMOS monolithic sensors

11

- Mainly used for inner tracker volume w/ $\Phi_{eq} < 10^{15}$ cm⁻²
- Pixel matrix directly provides x-y tracking
- Read out ASICs integrated in sensor

Pros: High granularity, very thin, flexible, fully integrated Cons: Difficult to achive full depletion, medium rad. hard, small die size

Summary

Silicon sensors are very versatile for vertex detectors

Silicon helps to achieve

- Good spatial resolution
- Large detector areas
- Very high granulatrity
- Thin sensors (50 µm)
- Extremely radiation hard
- Very fast signals

- → few µm
- \rightarrow 600 m² silicon CMS HGCAL
- \rightarrow <25 μm pitch
- \rightarrow low radiation length
- \rightarrow up to $\Phi_{eq} \sim 5 \cdot 10^{16} \text{ cm}^{-2}$
- \rightarrow down to 20 ps timing capability

Currently the main trends towards faster timing detectors, monolithic sensor, 3D sensors, and sensors with gain

Backup

Signal formation in silicon Weigthing potential

Drifting charge carriers induce mirror charges in electrodes and the current induced in an electrode is

$$I = q \overrightarrow{E_w} \overline{v}$$

- Drift near backside ($\Phi_w \rightarrow 0$) hardly contributes to signal
- We want to maximize $\overrightarrow{E_w} \vec{v} = \overrightarrow{E_w} \cdot \mu(\vec{E}) \vec{E}$

Signal formation in silicon Ramo theorem

Kolanoski, Wermes 2015

Drifting charge carriers induce mirror charges in electrodes and the current induced in an electrode is

$$I = q \overrightarrow{E_w} \overrightarrow{v}$$

- Drift near backside ($\Phi_w \rightarrow 0$) hardly contributes to signal
- We want to maximize $\overrightarrow{E_w} \vec{v} = \overrightarrow{E_w} \cdot \mu(\vec{E})\vec{E}$

Radiation damage in silicon Defect creation

Energetic particles can knock atoms from their lattice position

- Cross section strongly depends on particle type and energy
- Knock-on atom forms Frenkel pair (vacancyinterstitial)
- Frenkel pairs are mobile in the lattice and can recombine or form new defects
- High energy knock-on atoms can create cluster defects with modified lattice