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Energetic charged particles loose energy by ionizing the 
medium they are traversing 

• Cloud chamber: Ions seed condensation of supersaturated vapor

In silicon we use the same principle but directly 
measure the charge created by ionization
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Positron discovery
In cloud chamber

Carl Anderson 1932



Vertex detectors (trackers) are located around the 
interaction point of collider experiments

• Most widely used material for trackers is silicon

Introduction
Collider experiments
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Schematic section 
through CMS

CMS



Introduction
Requirements for high luminosity trackers
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CMS event display
w/ 50 pile-up events

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

HL-LHC: ~200 primary vertices per bunch crossing (pile-up)
In order to assign tracks to primary and secondary vertices we need

• Good spatial resolution (ATLAS: ~10 μm rφ)

• High granularity (down to 25 μm channel pitch)

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf
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CMS event display
w/ 50 pile-up events

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Vertex reconstruction for high pile-up can be improve with 
timing detectors (“4D tracking”)

Timing resolution of 20-30 ps would improve reconstruction 

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf


Silicon sensors
The ionization chamber
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CMS event display
w/ 50 pile-up events

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Ionizing particles create free electron-hole pairs in 
semiconductor which drift to electrodes in applied el. field

Why silicon?

• Low ionization energy: 3.6 eV/e-h, ~80 e-h/μm

• Fast signals: 100 μm/ns saturation velocity

• Availability of Si (8 km² wafers/yr) and technology!

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf


Signal formation in silicon
pn junction
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http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Intrinsic Si carrier density

• 𝑛 = 𝑝 = 𝑛𝑖~10
10 cm-3

pn junction:

• Recombination of e and h leaves
space charge region SCR

• Reverse bias leads to larger SCR

• SCR has high el. field and a very
low free carrier density 𝑛, 𝑝 ≪ 𝑛𝑖

Ideal to use as low noise 
detection volume!

SCR

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf


Radiation damage in silicon
Defect creation
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http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Energetic particles can knock atoms from their lattice position
• Cross section strongly depends on particle type and energy

• Knock-on atom forms Frenkel pair (vacancy-interstitial)

• Frenkel pairs are mobile in the lattice and can recombine or form new
defects

• High energy knock-on atoms can create cluster defects with modified
lattice

10 MeV p 24 GeV p 1 MeV n

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf


Radiation damage in silicon
Effects on sensor operation
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http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Most significant effects of radiation-
induced defects are

Change of the effective doping concentration

• 𝑁𝐷 decreases over time

• 𝑁𝐴 first decreases and then increases

• Type inversion n→p

• Loss of gain

Increase of thermal carrier generation

• Current in SCR increases

• Heats the sensors

Trapping of free carriers

• Carriers can only drift for short time

• Signal decreases

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf


• Mainly used for outer trackers volume w/ Φ𝑒𝑞 < 1016 cm-2

• Sandwiched strip sensors with stereo angle can provide x-y tracking

• Read out by ASICs glued on sensor

Pros: Proven technology, high spatial resolution, large area, less channels

Cons: Suffers from oxide damage, complicated wire bonding, thick sensors

Silicon detectors
Strip sensors
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ATLAS ITk strip moduleATLAS ITk test structure



Silicon detectors
Pixel sensors
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• Mainly used for inner tracker volume w/ Φ𝑒𝑞 > 1016 cm-2

• Pixel matrix directly provides x-y tracking

• Read out by ASICs bump bonded to sensor

Pros: High granularity, very good radiation hardness (3D), thin

Cons: Complicated bump bonding, expensive, small sensors

TimeSpot

CMS



Silicon detectors
CMOS monolithic sensors
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• Mainly used for inner tracker volume w/ Φ𝑒𝑞 < 1015 cm-2

• Pixel matrix directly provides x-y tracking

• Read out ASICs integrated in sensor

Pros: High granularity, very thin, flexible, fully integrated

Cons: Difficult to achive full depletion, medium rad. hard, small die size



Silicon sensors are very versatile for vertex detectors

Silicon helps to achieve

• Good spatial resolution → few μm

• Large detector areas → 600 m² silicon CMS HGCAL

• Very high granulatrity → <25 μm pitch 

• Thin sensors (50 μm) → low radiation length

• Extremely radiation hard → up to Φ𝑒𝑞~5 ∙ 10
16 cm-2

• Very fast signals → down to 20 ps timing capability

Currently the main trends towards faster timing detectors, 
monolithic sensor, 3D sensors, and sensors with gain

Summary
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Backup
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Signal formation in silicon
Weigthing potential
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Weigthing potential
in thin strip sensor

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Drifting charge carriers induce mirror charges in electrodes
and the current induced in an electrode is 

𝐼 = 𝑞𝐸𝑤 Ԧ𝑣
• Drift near backside (Φ𝑤 → 0) hardly contributes to signal

• We want to maximize 𝐸𝑤 Ԧ𝑣 = 𝐸𝑤 ∙ 𝜇 𝐸 𝐸

Signal current induced
in rightmost strip

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf


Signal formation in silicon
Ramo theorem
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Weigthing potential
in typical strip sensor

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Drifting charge carriers induce mirror charges in electrodes
and the current induced in an electrode is 

𝐼 = 𝑞𝐸𝑤 Ԧ𝑣
• Drift near backside (Φ𝑤 → 0) hardly contributes to signal

• We want to maximize 𝐸𝑤 Ԧ𝑣 = 𝐸𝑤 ∙ 𝜇 𝐸 𝐸

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf


Radiation damage in silicon
Defect creation
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http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

Energetic particles can 
knock atoms from their 
lattice position

• Cross section strongly 
depends on particle type 
and energy

• Knock-on atom forms
Frenkel pair (vacancy-
interstitial)

• Frenkel pairs are mobile in 
the lattice and can
recombine or form new
defects

• High energy knock-on 
atoms can create cluster
defects with modified
lattice

10 MeV p 24 GeV p 1 MeV n

http://www-conf.slac.stanford.edu/ssi/2012/Presentations/Tully.pdf

