JUSTUS-LIEBIG-

NIVERSITÄT

GIESSEN

Novel Material Studies and Characterizations @ JLU Giessen

Hans-Georg Zaunick K.-T. Brinkmann, V. Dormenev, P. Orsich, M. Peter

Justus-Liebig-Universität Giessen

HighD Consortium Meeting Feb 21/22, 2022

Bundesministerium für Bildung und Forschung

II. Physikalisches Institut

14032.

Scintillators

Standard Scintillators

Fig. 1. SEM of YAG:Ce ceramics: a) surface, b) scale.

Fig. 2. Photography of translucent YAG:Ce ceramics under visible light (a) and illuminated with 460 nm LED from below (b).

Translucent garnet ceramics (NRC Kurtchatov)

Stochiometric optimization of garnets

GAGG grown ingods and cut crystals

Optimize matching with SiPM Photosensors

Courtesy of Crytur (CZ) YAG:Ce fibers (cut or drawn by μ-PD)

glass ceramics

Optimized Organic scintillators

Minicalorimeter arrays

02/22/2022

Scintillators

Material	ρ, g/cm ³	Z _{ef} / radiation length X _a ,cm	Yield, nh/MeV	τ _{dec} ,	λ _{max} , nm
Glass ceramics BaO*2SiO,:Ce (DSB)	3.8	51/ 3.0	300	22/ 72/ 450	440
PbWO ₄ (PWO II)	8.3	75.6/ 0.89	100	6	420
$ Gd_{3}Al_{2}Ga_{3}O_{12}:Ce (GAGG) $	6.67	50.6/ 1.61	46,000	80/ 800	520
(Gd-Y) ₃ (Al-Ga) ₅ O ₁₂ :Ce	5.8	45/ 1.94	60,000	100/ 600	560
Y ₃ Al ₅ O ₁₂ :Ce (YAG)	4.55	32.6/ 3.28	11,000	70	550
YAlO ₃ :Ce (YAP)	5.35	32/ 2.2	16,200	30	347
(Y _{0.3} -Lu _{0.7}) AlO ₃ :Ce (LuYAG)	7.1	60/ 1.3	13,000	18/ 80/ 450	375
Lu ₂ SiO ₅ :Ce (LSO)	7.4	66/ 1.1	27,000	40	420
(Lu-Y) ₂ SiO ₅ :Ce (LYSO)	7	60/ 1.35	30,000	37	420
Plastic (Polyvinyltoluene/ N-tolylcarbazole)	1.023	4.5/ 45	9,200	9.2	420/490
PEN (Polyethylene- Naphtalate)	1.33	?/?	Up to 10,500	35	430

Scintillator Characterization

DSB Glass Ceramics

Early samples JLU Gi & INP Minsk

DSB Glass Ceramics

Light yield vs temperature 40 35 Light Yield / phe/MeV 30 25 →-#1, T = +20° C 20 ---- #1, T = -25° C 15 -+-#5, T = +20° C 10 -⊖-#5, T = -25° C -- #7, T = +20° C 5 ----#7, T = -25° C 0 0 1000 2000 3000 4000 5000 Integration time / ns

Radiation induced transmittance change

- 150 MeV protons + ⁶⁰Co gammas
- Int. p fluence: 5x10¹³ p/cm²

DSB Glass Ceramics

Much more Details in talk of Valera Dormenev

- 150 MeV protons + ⁶⁰Co gammas
- Int. p fluence: 5x10¹³ p/cm²

Garnet Scintillators

Garnets are good candidates for future HEP applications (fast, bright, rad hard)

Garnet scintillation materials like

Y₃Al₅O₁₂ (YAG), Y₃Al₂Ga₃O₁₂, Gd₃Al₂Ga₃O₁₂, (Gd-Y)₃(Al-Ga)₅O₁₂

co-doped with divalent ions of group-II elements

are candidates to improve the scintillation response.

Aims:

- Improve scintillation kinetics by suppressing slow scintillation component(s)
- Suppress deterioration due to radiation damage
- Applicability of stimulated radiation damage recovery

GYAGG:Ce (var bulk conc. of Gd, Y)

Some current DUTs:

YAG:Ce (fixed dopant conc.)

GAGG:Ce (var dopant conc.)

YAG:C,Ce (dopant+codopant)

Optimization of Garnets - Ceramics

Nanopowder synthesis

Compactification

- Pressing
- Casting
- Moulding
- 3d-printing

Sintering

NRC "Kurchatov Institute" - IREA, Moscow, Russia

02/22/2022

Optimization of Garnets - Ceramics

Sample: 1.5 mm thick GYAGG ceramic plate

Cs-137, 662 keV

Na-22, 511 keV, start-stop Scintillation kinetics

Ref.: GAGG crystal (2 mm thick) LY ~25k Ph/MeV, AE/E - 8.7% LY ~28k Ph/MeV, AE/E 13-15% Ref.: YAP, $\tau = 28$ ns $\tau_1 = 5$ ns (70%) $\tau_2 = 40$ ns (30%)

Optimization of Garnets: Example YAG

Influence of Dopant and Codopants: YAG:C,Ce

- Two YAG: Ce, C and two YAG: C samples produced by Czochralski method by ISMA (Kharkiv, Ukraine)
- Main dopant: C, secondary (co)dopant: Ce
- Samples were annealed at different conditions after production (see table below).

Sample type	Dimensions, mm	Annealing conditions
top left –YAG: C (rectangular)	10x10x6	Annealing in air
bottom left – YAG: C (plate)	30x15x2	Optimized annealing in air
top right - YAG: Ce, C (cubic)	10x10x10	Annealing in Ar+CO
bottom right - YAG: Ce, C (plate)	25x13x2	Optimized annealing in air

Optimization of Garnets: Example YAG

 \rightarrow Doping and codoping concentrations can be tuned to reduce the contribution of long-term component

Optimization of Garnets: Example YAG

Radiation Damage

Current and future HEP detectors have to deal with significant radiation damage

- Loss in light output/transmittance
 - → degredation of enery resolution

Radiation damage in scintillators subdivided in:

Electromagnetic component

- Leads to saturation of deep traps
- Is recoverable (spontaneous and stimulated recovery) <u>Hadronic component</u>
- · Damages the crystal structure
- Is not recoverable

Criterion: Rad induced absorption coeff:

$$\Delta k = \ln \left(\frac{T_{bef}}{T_{after}} \right) \cdot \frac{1}{d}$$

Francesca Nessi-Tedaldi(ETH Zürich, Switzerland)

Radiation Damage

Example: PWO

PbWO₄ irradiated by 150 MeV protons @*CART-KVI*, *Groningen*, *Netherlands* Fluence = 1.8x10¹³ protons/cm²

Mostly em damage \rightarrow recoverable

lower Z material required sampling calorimetry cheap for mass production

PbWO₄ irradiated by 24 GeV protons @*CERN*, *Switzerland* Fluence = 3*10¹³ protons/cm²

Permanent shift of absorption edge

more hadronic damage \rightarrow permanent effects visible

- creation of macro defects
- highly ionizing fission products
- ion displacements

02/22/2022

Radiation Damage (example PWO)

02/22/2022

Stimulated Recovery

Partial (hadronic) or total (em) recovery of radiation induced deterioration

Organic Scintillators

 Currently: active developments together with manufacturers of PS-based scintillators wrt/ radiation hardness

Detailed report later today by Valera Dormenev

• Currently ongoing: PEN scintillation material characterization for alpha and neutron detector applications using thin foils

Problem with thick pieces: casting of clear samples in lab difficult → need to find partner for injection-moulding

02/22/2022

G(Y)AGG as Neutron Detector

	Absorbing isotope content,	n absorptic cross-section for the isot	on on ope <i>,</i> b	Absorbing layer thickness,	Absorption for the give	efficiency n layer, %
	at./cm³	En = 0.025 eV	En = 1 MeV	mm	En = 0.025 eV	En = 1 MeV
³ He tube (16 bar)	4,3*10 ²⁰	5319.6	2.9	20	98.96	0.25
⁶ Li ₂ O•2SiO ₂ :Ce ³⁺ glass (90% ⁶ Li)	1,7*10 ²²	955.4	1.3	5	99.99	1.05
$Gd_{3}Al_{2}Ga_{3}O_{12}$:Ce ³⁺ crystal (nat. Gd)	1,3*10 ²²	46095.4	5.1	5	99.99(99)	3.25

Neutron detection efficiency for 5 mm GAGG plate:

Thermal (0.025 eV) – 99.99% Fast (1 MeV) – ~3%

|--|

G(Y)AGG as Neutron Detector

GEANT4 modelling of neutron absorption in natural Gd (metallic)

Neutron detection efficiency for 5 mm GAGG plate: Thermal (0.025 eV) - 99.99%Fast $(1 \text{ MeV}) - \sim 3\%$

G(Y)AGG as Neutron Detector

02/22/2022

GAGG Minicalorimeter

64 GAGG pixels (3x3x40mm) + 64 channels SIPM array Read-out with high time and energy resolution

GAGG rods inside reflective alveole receptacle: 100um thin, 3d printed

Hamamatsu S13361-3050AS-8 8x8 SiPM Array

64 pixel GAGG+SiPM +preamp assembly

Successfull In-beam test at MIT (Marburg) in Nov 2019, 220 MeV protons

02/22/2022

GAGG Minicalorimeter

64 GAGG pixels (3x3x40mm) + 64 channels SIPM array Read-out with high time and energy resolution

The End