BiOi defects in LGADs

Chuan Liao^a, E. Fretwurst^a, E. Garutti^a, J.Schwandt^a, A.Vauth^a

^aInstitut für Experimentalphysik, Universität Hamburg

High-D Consortium

Feb 22, 2022

I. Motivation

- II. Displacement damage and B_iO_i defect
- **III.** Experimental details
- IV. Measurement results
- V. Summary

Motivation

Radiation damage of LGADs [1] (Low Gain Avalanche Diodes)

[1] Kramberger, G., et al. "Radiation effects in Low Gain Avalanche Detectors after hadron irradiations." Journal of Instrumentation 10.07 (2015): P07006.

Motivation

Schematic of Silicon crystal (cube side α_0 =5.431 Å) N_{eff} (space charge density in the bulk, at room temperature) was determined by concentration of B_s⁻ or P_s⁺(p or n type)

The top view of Silicon diodes (PIN diodes) we used

22/02/22

High energy particle or Gamma-ray

UΗ

Schematic of radiation damage in p-type silicon sensor

I: Lattice Silicon atom (Si) was knocked out by incident particle and

- Si got recoil energy and turns to interstitial silicon (Si)
- II: Si, diffusion in the bulk and impact on Lattice Boron atom (B)
- III: B was knocked out Si and turns to interstitial Boron (B) and finally captured by interstitial Oxygen (O)

[1] Y. Gurimskaya, 31st RD50 Workshop, 20-22 of November, 2017, CERN, Geneva, Switzerland

Chuan Liao - Boron removal effect in silicon sensors

N_{aff} vs. fluence for different initial doping concentration

Radiation damage of p-type diodes is dominated by acceptor removal in the beginning and afterwards by acceptor generation [1]

 B^- turn to $B_iO_i^+$

Change in N_{eff} is a factor of 2 and it will significantly affect the distribution of electric field.

Radiation damage in p-type silicon sensor

- 1. Impurity dependence (investigate PIN diodes with different resistivity)
- 2. Irradiated particle dependence (investigate PIN diodes irradiated by different particles)
- 3. Irradiation fluence dependence (investigate PIN diodes with different irradiation fluence)
- 4. Annealing behavior (investigate PIN diodes after isothermal annealing at 80°C, and isochronal annealing from 100°C to 200°C)
- 5. LGADs sensor (investigate LGADs sensor, such observed results compare to the results given by 1-4)

"The radiation damage induced defect in p-type silicon, BiOi is investigated"

Experimental principle

Basic Principle of Thermally Stimulated Current-TSC [2]:

a) Cooling

b) Injection:

Forward bias injection, light injection and majority carriers injection.

$$I_{tsc} = \frac{1}{2} q_0 A d N_t e_n \exp\left(-\frac{1}{\beta} \int e_n(T) dT\right)$$
$$e_n = \sigma_n v_{th,n} N_c \times \exp\left(\frac{-E_a}{K_b T}\right)$$
$$E_a = E_c - E_T$$

c)

c) Recording data

 N_t is defect concentration; b is heating rate; s_n is capture cross section; **e). example of calculated TSC peak** E_a is activation energy; A is diodes area; d depleted thickness; [1]

[1] Buehler, M. G. Solid-State Electronics 15.1 (1972): 69-79.

[2] Moll, Michael. Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. No. DESY-THESIS-1999-040. DESY, 1999.

Investigated diodes

Effective doping for EPI diodes with different resistivity after irradiation by **23 GeV protons** with fluence value 4.28E13 n_{eq} /cm².

Effective doping for EPI- and CZ-diodes (~ 10 Ω cm) after irradiation with **6 MeV electrons** with fluence values in the ranges between 3.98E13 ~ 2.39E14 n_{eq}/cm².

Thermally Stimulated Current

TSC spectra of diodes with different resistivity after **23 GeV** protons irradiation to $\Phi_{eq} = 4.28E13 \text{ n}_{eq}/\text{cm}^2$ for reverse bias 20 V (2 k Ω cm), 40 V (250 Ω cm), 200 V (50 Ω cm) and 100 V (10 Ω cm, spectra normalized to d/w(100 V)).

TSC spectra of diodes produced by **different processing** – Epitaxial (EPI-3, 7, 9) and Czochralski (CZ-3, 7) with 10 Ω cm resistivity, and after **6 MeV electrons** irradiation with fluence $\Phi = 1, 4, 6 \times 10^{15}$ cm⁻². The diodes were measured with applied reverse bias 100 V, and spectra are normalized by a factor 1/(Aw(T)). A = active area, w(T) = temperature dependent depletion depth at constant bias voltage

Introduction rate

Introduction rate of B_iO_i as function of initial doping (~[B_s]) for EPI-diodes

Introduction rate of B_iO_i and C_iO_i as function of Carbon concentration (~[C_s])

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

3.0E-03 EPI (6 MeV electron, 1.59e14) EPI (6 MeV electron, 2.39e14) (A/cm^3) 2.5E-03 CZ (6 MeV electron, 3.98e13) CZ (6 MeV electron, 1.59e14) EPI (23 GeV Proton, 4.28e13) 2.0E-0 Jd density 1.5E-0 current 1.0E-03 5.0E-0 Leakage 0.0E+0050 100 150 200 Annealing time (min)

Annealing behavior of current related damage parameter for EPIdiodes with resistivity 2 k Ω cm (12_74), 250 Ω cm (09_73) and 50 Ω cm (06_71), which were irradiated by 23 GeV protons with fluence $\Phi_{eq} = 4.28$ E13 cm⁻² Annealing behavior of leakage current for EPI- and Cz- diodes with resistivity 10 Ω cm, and irradiated by different particles and fluence values

UΗ

Isochronal annealing behavior of B_iO_i

Defect concentration [BiOi] and Neff vs. annealing temperature. For each temperature step the duration of annealing was 15 min The frequency factors for annealing out of BiOi vs. $1/(k_B T_{ann})$; from the slope the corresponding activation energy of BiOi is extracted to $E_A = 1.35 \pm 0.01 \text{ eV}$

- I. Impurity dependence:
 - Higher initial doping concentration leads to higher B_iO_i introduction rate after the same fluence value, but the increase is limited
 - The diodes with high carbon concentration restrain the generation of B_iO_i and, thus, depress the deactivation of $[B_s]$
- II. Fluence dependence:
 - The higher irradiation fluence value leads to higher B_iO_i concentration (up to now)
 - The higher irradiation fluence value leads to higher leakage current, and the annealing out of ∆I increasing with irradiation fluence value
- III. Particle dependence:
 - The generation of B_iO_i for 23 GeV proton approx equal to half of value for 6 MeV electron
 - The larger annealing out value of ΔI was observed on 23 GeV proton irradiated diodes compare to 6 MeV electron irradiated

IV. Annealing behaviors:

- If $T_{ann} > 150 \text{ °C}$, [B_iO_i] decrease, N_{eff} increase
- The change $\Delta N_{eff} \approx 2 \times \Delta N_t$ ([B_iO_i]) as expected from B_s(-) \rightarrow B_iO_i (+)

V. LGAD diodes:

- · The measurements of the pixel sensors with and without wire-bond were performed in our lab
- · Up to now the analysis of the data was not as we expected

Back Up

Experimental details

Experimental detail

Information of measured expitaxial silicon diodes (PIN)

Label	EPI50P_01_DS_73	EPI50P_06_DS_71	EPI50P_09_DS_73	EPI50P_12_DS_74			
N _{eff,0}	1.37E15 cm ⁻³	1.97E14 cm ⁻³	4.53E13 cm ⁻³	6.24E12 cm ⁻³			
Irradiation	23 GeV proton, Φ = 6.91E13 cm ⁻² , neutron equivalence Φ_{eq} = 4.28E13 cm ⁻²						
Area	6.927E-2 cm ²						
Thickness	50 μm						

Experimental detail

Information of measured silicon diodes									
Label	EPI50P_06_DS_3	EPI50P_06_DS_7	EPI50P_06_DS_9	CZ300P_06_DS_3	CZ300P_06_DS_7				
N _{eff,0}	Expitaxial silicon, P-type 1.15e15 cm-3			Cz silicon, P-type 1.05e15 cm ⁻³					
Initial resistivity	~ 10 Ωcm			~ 10 Ωcm					
Irradiation (6 MeV electrons)	1e15 e/cm² (3.98e13 n _{eq} /cm²)	4e15 e/cm ² (1.59e14 n _{eq} /cm ²)	6e15 e/cm ² (2.39e14 n _{eq} /cm ²)	1e15 e/cm² (3.98e13 n _{eq} /cm²)	4e15 e/cm ² (1.59e14 n _{eq} /cm ²)				
Area	6.21E-2 cm ²			2.9E-2 cm ²					
Thickness	50 μm			350 μm					
C-V, I-V: Experimental parameter (C-V, I-V):		Thermally stimulated current and Thermally							

C-V, I-V:

Temperature: 20 °C Humidity: < 10% Frequencies for C-V: 230 Hz, 455 Hz, 1 kHz, 10 kHz AC voltage for C-V: 0.5 V Experimental parameter (TSC and TS-Cap): Cooling down bias: 0 V Filling temperature: typical 10 K Filling: Forward bias filling, 0 V filling or light injection Filling time: 30 s Delay time: 30 s Heating rate: 0.183 K/s

Thermally stimulated current and Thermally stimulated capacitance (TSC, TS-Cap):

22/02/22

Experimental detail

Methods for I-V and C-V measurements

I. The decreases of leakage current after isothermal annealing

II. Stability of effective doping concentration N_{eff} (full depeleted voltage V_{fd}) during isothermal annealing

UΗ

Ĥ

DER FORSCHUNG

Uni

Annealing of current and full depletion voltage

 $\alpha = \frac{1}{V \phi_{ec}}$

Fitting functions[1]: $\alpha(t) = \alpha_I \cdot \exp\left(\frac{-t}{\tau_I}\right) + \alpha_0 - \beta \cdot \ln\left(\frac{t}{t_0}\right)$ $t_0 = 1 \min$ Fit parameter(50 Qcm): Ref. [1]: $\alpha_I \approx 1.14 \times 10^{-17} A/cm$ $\alpha_I \approx 1.13 \times 10^{-17} A/cm$ $\tau_I \approx 18 \min$ $\tau_I \approx 9 \min$ $\alpha_0 \approx 5.48 \times 10^{-17} A/cm$ $\alpha_0 \approx 4.23 \times 10^{-17} A/cm$ $\beta_0 \approx 4.51 \times 10^{-18} A/cm$ $\beta_0 \approx 2.83 \times 10^{-18} A/cm$

I-V and N_{eff} profile (10 Ω cm, as-irrad)

- Leakage current increases with fluence. In order to observe the mean value of leakage current density (J_d) , the current in the range from 30V to 70V was chosen for calculate J_d (the depleted volume is taken from C-V measurement)
- Doping profile is taken from C-V measurement with frequency equal 10 kHz and V_{AC}=0.5V. Effective doping decrease with fluence

TSC Data analyze

BiOi in TSC spectra (1.97E14 cm⁻³)

Fig 6. TSC spectra for different bias voltages of 50 Ωcm diode after 23 GeV proton irradiation

- Dominant B_iO_i signal
- Shift of peak maximum with $V_{\text{bias}} \rightarrow \text{Poole-Frenkel effect; electron trap } B_iO_i$ (o/+) donor defect
- Peak amplitude increases with bias voltage due to increasing depletion depth and after full depletion extending into the p+ region

22/02/22

Poole Frenkel effect

[1] J. L. Hartke, J. Appl. Phys. 39, 4871 (1968). [2] Pintilie, I., E. Fretwurst, and G. Lindström. Applied Physics Letters 92.2 (2008): 024101.

Chuan Liao - Boron removal effect in silicon sensors

105 110 115

85

80

Fit B_iO_i peak in TSC spectra

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg

UΗ

For same irradiation fluence, the BiOi concentration increase as $N_{eff,0}$ increasing. And if most of the recoil energy deposited forms B_iO_i defect, the concentration of other defects will decrease

Activation energy and defect concentration

Zero field activation energy ${\rm E}_{\rm a0}$ versus bias voltage of BiOi defect extracted from TSC spectra of 250 Ωcm and 2K Ωcm

 $\sigma_n \approx 1 \times 10^{-15} \, cm^{-2}$

 B_iO_i concentration as function of excess voltage ($V_{bias} - V_{fd}$) for the 250 Ω cm and 2k Ω cm extracted from TSC spectra measured after annealing steps between 8 min and 60 min at 80°C. The ranges for a linear fit to the data are indicated for both diodes in order to get the

 B_iO_i concentration at $V_{bias} = V_{fd}$

Introduction rate of B_iO_i for different doping

For higher initial doping ($N_{eff,0} > 1E15 \text{ cm}^{-3}$), There appears to be some limit for the increase of g(B_iO_i) --> for higher $N_{eff,0} > 1E15 \text{ cm}^{-3}$, If $N_{eff,0}$ improved, the radiation hardness improves as well

[1] Makarenko, Leonid F., et al. physica status solidi (a) 216.17 (2019): 1900354.

[2] Moll, Michael. "Acceptor removal-Displacement damage effects involving the shallow acceptor doping of p-type silicon devices." (2019)

22/02/22

Annealing behavior of TSC measurements

Chuan Liao - Boron removal effect in silicon sensors

Annealing behavior of TSC measurements

Defect concentration T_filling=10K, V_filling=5V

Indication for X-defect (1.97E14 cm⁻³)

UΗ

iŤi

TS-Cap measurement analysis

Example of TS-Cap on B_iO_i (10 Ω cm, as-irrad)

- Depleted depth was extracted from TS-cap with $d = \varepsilon_{si} \varepsilon_0 A/C$
- The shift of B_iO_i peak temperature versus V_{bias} can also be observed in TS-Cap measurement
- Freeze-out of free charge carriers for T < 40 K
- Effective doping concentration can be extracted only if the diode is not fully depleted

Basic principle(1-D)

Poisson equation:

 $\frac{dE}{dx} = \frac{q_0 N_{eff}}{\varepsilon \varepsilon_0}$

f

Occupation fraction:

$$(T) = \exp\left(-\frac{1}{\beta}\int e_n dT\right)$$

Effective doping during emission:

 $N_{eff} = N_0 + N_t \cdot (1 - f(T))$

3-d Poole Frenkel ($\gamma = (qE/\pi\epsilon_0\epsilon_r)^{1/2}q/(k_BT)$):

$$e_n = \sigma_n v_{th,n} N_c \times \exp(\frac{-Ea_0}{K_b T}) [(\frac{1}{\gamma^2}) (e^{\gamma} (\gamma - 1) + 1) + \frac{1}{2}]$$

Capacitance:

Finite element (Basic principle)

Simplification (t for temperature T(K), i stands for position): Poisson equation (i<m.):

$$E_{i+1,t} - E_{i,t} = \frac{q_0 Neff_{i,t}}{\varepsilon \varepsilon_0} \cdot \frac{d_t}{n} \quad \text{and} \quad E_{i,t} = \sum_{i=0}^{m_t} \frac{q_0 Neff_{i,t}}{\varepsilon \varepsilon_0} \cdot \frac{d}{n} - \sum_{j=0}^i \frac{q_0 Neff_{j,t}}{\varepsilon \varepsilon_0} \cdot \frac{d}{n}$$

$$\sum_{i=0}^{m_t} E_{i,t} \cdot \frac{d}{n} = V$$

Occupation fraction:

$$f_{i,t} = \exp\left(-\sum_{t} e_{n,i,t}\right)$$

Effective doping during emission:

$$Neff_{i,t} = N_0 - N_t \cdot (1 - f_{i,t})$$

3-d Poole Frenkel ($\gamma_{i,t} = (qE_{i,t}/\pi\epsilon_0\epsilon_r)^{1/2}q/(k_Bt)$):

$$e_{n,i,t} = \sigma_n v_{th,n} N_c \times \exp\left(\frac{-E_{a0}}{k_B t}\right) \left[\left(\frac{1}{\gamma_{i,t}^2}\right) \left(e^{\gamma_{i,t}} \left(\gamma_{i,t} - 1\right) + 1\right) + \frac{1}{2} \right]$$

UΗ

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG