BiOi defects in LGADs

Chuan Liaoª, E. Fretwurstª, E. Garuttiª, J.Schwandtª, A.Vauthª

a Institut für Experimentalphysik, Universität Hamburg

High-D Consortium

Feb 22, 2022

I. Motivation

- II. Displacement damage and B_iO_i defect
- III. Experimental details
- IV. Measurement results
- V. Summary

Motivation

Radiation damage of LGADs [1] (Low Gain Avalanche Diodes)

[1] Kramberger, G., et al. "Radiation effects in Low Gain Avalanche Detectors after hadron irradiations." Journal of Instrumentation 10.07 (2015): P07006.

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 3/37

Motivation

Schematic of Silicon crystal (cube side $\alpha_{_0}$ =5.431 Å) N_{eff} (space charge density in the bulk, at room temperature) was determined by concentration of B^s - or P^s + (p or n type) The top view of Silicon diodes (PIN diodes) we used

Radiation damage in p-type silicon sensor

High energy particle or Gamma-ray

Schematic of radiation damage in p-type silicon sensor

- I: Lattice Silicon atom (Si_s) was knocked out by incident particle and
- ${\rm Si}_\textrm{s}$ got recoil energy and turns to interstitial silicon (Si $_\textrm{j}$)
- II: Si $_{\shortmid}$ diffusion in the bulk and impact on Lattice Boron atom (B $_{\text{\tiny S}}$)
- III: B_s was knocked out Si $_\mathrm{i}$ and turns to interstitial Boron (B $_\mathrm{i}$) and finally captured by interstitial Oxygen (O $_{\rm j}$)

[1] Y. Gurimskaya, 31st RD50 Workshop, 20-22 of November, 2017, CERN, Geneva, Switzerland.

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 5/37

 N_{eff} vs. fluence for different initial doping concentration

Radiation damage of p-type diodes is dominated by acceptor removal in the beginning and afterwards by acceptor generation [1]

 B^{\dagger} turn to $B_{i}O_{i}^{+}$

Change in N_{eff} is a factor of 2 and it will significantly affect the distribution of electric field.

Radiation damage in p-type silicon sensor

- 1. Impurity dependence (investigate PIN diodes with different resistivity)
- 2. Irradiated particle dependence (investigate PIN diodes irradiated by different particles)
- 3. Irradiation fluence dependence (investigate PIN diodes with different irradiation fluence)
- 4. Annealing behavior (investigate PIN diodes after isothermal annealing at 80°C, and isochronal annealing from 100°C to 200°C)
- 5. LGADs sensor (investigate LGADs sensor, such observed results compare to the results given by 1-4)

''The radiation damage induced defect in p-type silicon, BiOi is investigated''

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 6/37

Experimental principle

Basic Principle of Thermally Stimulated Current-TSC [2]:

a) Cooling

b) Injection:

Forward bias injection, light injection and majority carriers injection.

$$
I_{\text{tsc}} = \frac{1}{2} q_0 A d N_t e_n \exp\left(-\frac{1}{\beta} \int e_n(T) dT\right)
$$

$$
e_n = \sigma_n v_{th,n} N_c \times \exp\left(\frac{-E_a}{K_b T}\right)
$$

$$
E_a = E_C - E_T
$$

 $\mathbf{c})$

c) Recording data

 N_t is defect concentration; b is heating rate; s_n is capture cross section; $\;$ **e). example of calculated TSC peak** $\mathsf{E}_{\rm a}$ is activation energy; A is diodes area; d depleted thickness; [1]

[1] Buehler, M. G. Solid-State Electronics 15.1 (1972): 69-79.

[2] Moll, Michael. Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. No. DESY-THESIS-1999-040. DESY, 1999.

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 7/37

Investigated diodes

Effective doping for EPI diodes with different resistivity after irradiation by <mark>23 GeV protons</mark> with fluence value 4.28E13 n_{eq}/cm².

Effective doping for EPI- and CZ-diodes (\sim 10 Ω cm) after irradiation with **6 MeV electrons** with fluence values in the ranges between 3.98E13 ~ 2.39E14 n eq /cm² .

Thermally Stimulated Current

TSC spectra of diodes with different resistivity after **23 GeV protons** irradiation to Φ_{eq} = 4.28E13 $n_{\text{eq}} / \text{cm}^2$ for reverse bias 20 V (2 kΩcm), 40 V (250 Ωcm), 200 V (50 Ωcm) and 100 V (10 Ωcm, spectra normalized to d/w(100 V)).

TSC spectra of diodes produced by **different processing** – Epitaxial (EPI-3, 7, 9) and Czochralski (CZ-3, 7) with 10 Ω cm resistivity, and after 6 MeV electrons irradiation with fluence $\Phi = 1, 4, 6 \times 10^{15}$ cm⁻². The diodes were measured with applied reverse bias 100 V, and spectra are normalized by a factor $1/(Aw(T))$. A = active area, $w(T)$ = temperature dependent depletion depth at constant bias voltage

Introduction rate

EPI-diodes

Introduction rate of B_iO_i and C_iO_i as function of Carbon concentration (~[C $_{\rm s}$])

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 11/37

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Annealing behavior of current related damage parameter for EPIdiodes with resistivity 2 k Ω cm (12–74), 250 Ω cm (09–73) and 50 Ω cm (06–71), which were irradiated by 23 GeV protons with fluence $\Phi_{\rm eq}$ = 4.28E13 cm⁻²

Annealing behavior of leakage current for EPI- and Cz- diodes with resistivity 10 Ω cm, and irradiated by different particles and fluence values

UHI

Isochronal annealing behavior of B_iO_i

Defect concentration [BiOi] and Neff vs. annealing temperature. For each temperature step the duration of annealing was 15 min

The frequency factors for annealing out of BiOi vs. $1/(k_{_{B}}T_{_{ann}})$; from the slope the corresponding activation energy of BiOi is extracted to $E_{\rm A}$ = 1.35 \pm 0.01 eV

- I. Impurity dependence:
	- \bullet Higher initial doping concentration leads to higher B_iO_i introduction rate after the same fluence value, but the increase is limited
	- \bullet The diodes with high carbon concentration restrain the generation of B_iO_i and, thus, depress the deactivation of [B_s]
- II. Fluence dependence:
	- The higher irradiation fluence value leads to higher $\mathsf{B}_{\mathsf{i}}\mathsf{O}_{\mathsf{i}}$ concentration (up to now)
	- \bullet The higher irradiation fluence value leads to higher leakage current, and the annealing out of ΔI increasing with irradiation fluence value
- III. Particle dependence:
	- The generation of B_iO_i for 23 GeV proton approx equal to half of value for 6 MeV electron
	- \bullet The larger annealing out value of ΔI was observed on 23 GeV proton irradiated diodes compare to 6 MeV electron irradiated

IV. Annealing behaviors:

- If T_{ann} > 150 °C, [B_iO_i] decrease, N_{eff} increase
- The change $\Delta N_{\text{eff}} \approx 2 \times \Delta N_{\text{t}}$ ([B_iO_i]) as expected from B_s(-) → B_iO_i (+)

V. LGAD diodes:

- The measurements of the pixel sensors with and without wire-bond were performed in our lab
- Up to now the analysis of the data was not as we expected

Back Up

Experimental details

Experimental detail

Information of measured expitaxial silicon diodes (PIN)

Experimental detail

Frequencies for C-V: 230 Hz, 455 Hz, 1 kHz, 10 kHz

AC voltage for C-V: 0.5 V Experimental parameter (TSC and TS-Cap):

Cooling down bias: 0 V Filling temperature: typical 10 K Filling: Forward bias filling, 0 V filling or light injection Filling time: 30 s Delay time: 30 s Heating rate: 0.183 K/s

Experimental detail

Methods for I-V and C-V measurements

$$
\textbf{Universität Hamburg} \quad C-V, \text{ I-V} \text{ measurement} - \text{isothermal annealing}
$$

I. The decreases of leakage current after isothermal annealing

II. Stability of effective doping concentration N_{eff} (full depeleted voltage V_{td}) during isothermal annealing

U_H

▛ **DER FORSCHUNG**

Annealing of current and full depletion voltage

$$
\alpha = \frac{I}{V \phi_{eq}}
$$

 α ^{*π*}≈1.14×10⁻¹⁷ *A*/ *cm* τ_{I} \approx 18 *min* α_0 ≈5.48×10⁻¹⁷ *A*/*cm* α_0 ≈4.23×10⁻¹⁷ *A*/*cm* ^β0≈4.51×10[−]¹⁸ *A*/*cm* ^β0≈2.83×10[−]¹⁸ *A*/ *cm* $\alpha(t) = \alpha_i \cdot \exp\left(\frac{-t}{\tau_i}\right) + \alpha_0 - \beta \cdot \ln\left(\frac{t}{t}\right)$ $t_0 = 1$ min $\frac{-t}{\tau_I}$)+ α_0 - β ·ln($\frac{t}{t}$ *t* 0 Fitting functions[1]: $\alpha(t) = \alpha_t \cdot \exp\left(-\frac{c}{\tau_I}\right) + \alpha_0 - \beta \cdot \ln\left(\frac{c}{\tau_s}\right)$ Fit parameter(50 Ω cm): Ref. [1]: α_i ≈1.13×10⁻¹⁷ *A*/*cm* $\tau_{\rm r}$ ≈9*min*

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 22/37

I-V and N_{eff} profile (10 Ω cm, as-irrad)

- Leakage current increases with fluence. In order to observe the mean value of leakage current density (J_d), the current in the range from 30V to 70V was chosen for calculate $\sf J_{\sf d}$ (the depleted volume is taken from C-V measurement)
- Doping profile is taken from C-V measurement with frequency equal 10 kHz and V_{AC}=0.5V. Effective doping decrease with fluence

TSC Data analyze

BiOi in TSC spectra (1.97E14 cm-3)

- Dominant B_iO_i signal
- Shift of peak maximum with $\mathsf{V}_{\mathsf{bias}} \to \mathsf{Poole\text{-}Frenkel effect}$; electron trap B $_{\mathsf{i}}\mathsf{O}_{\mathsf{i}}$ (o/+) donor defect
- Peak amplitude increases with bias voltage due to increasing depletion depth and after full depletion extending into the p+ region

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 25/37

Poole Frenkel effect

[1] J. L. Hartke, J. Appl. Phys. 39, 4871 (1968). [2] Pintilie, I., E. Fretwurst, and G. Lindström. Applied Physics Letters 92.2 (2008): 024101.

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 26/37

 $T(\widetilde{K})$

Fit B_iO_i peak in TSC spectra

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Universität Hamburg

UHI

For same irradiation fluence, the BiOi concentration increase as N_{eff} increasing. And if most of the recoil energy deposited forms B_iO_i defect, the concentration of other defects will decrease

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 27/37

Activation energy and defect concentration

Zero field activation energy E_{a0} versus bias voltage of BiOi defect extracted from TSC spectra of 250 Ω cm and 2K Ω cm

 $\sigma \approx 1 \times 10^{-15}$ *cm*⁻²

 B_iO_i concentration as function of excess voltage (V $_{bias}$ - V $_{\text{td}}$) for the 250 Ω cm and 2k Ω cm extracted from TSC spectra measured after annealing steps between 8 min and 60 min at 80° C. The ranges for a linear fit to the data are indicated for both diodes in order to get the

 B_iO_i concentration at $V_{bias} = V_{tot}$

Introduction rate of B_iO_i for different doping

For higher initial doping (N_{eff,0} > 1E15 cm⁻³), There appears to be some limit for the increase of g(B_iO_i) --> for higher $\,$ N_{eff,0} > 1E15 cm⁻³, If N_{eff} improved, the radiation hardness improves as well

[1] Makarenko, Leonid F., et al. physica status solidi (a) 216.17 (2019): 1900354.

[2] Moll, Michael. "Acceptor removal-Displacement damage effects involving the shallow acceptor doping of p-type silicon devices." (2019).

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 29/37

Annealing behavior of TSC measurements

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 30/37

Annealing behavior of TSC measurements

Defect concentration T_filling=10K, V_filling=5V

Indication for X-defect $(1.97E14 \text{ cm}^3)$

Annealing behavior of X-defect

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 33/37

TS-Cap measurement analysis

Example of TS-Cap on B_iO_i (10 Ω cm, as-irrad)

- Depleted depth was extracted from TS-cap with $d = \varepsilon_{\alpha} \varepsilon_{\alpha} A/C$
- The shift of B_iO_i peak temperature versus V $_{\textrm{\tiny bias}}$ can also be observed in TS-Cap measurement
- Freeze-out of free charge carriers for $T < 40 K$
- Effective doping concentration can be extracted only if the diode is not fully depleted

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 35/37

Basic principle(1-D)

Poisson equation:

Occupation fraction:

 $\frac{dE}{dx}$ = $\frac{1}{\beta}\int e_n dT$

 $q^{\,}_{\,0}N^{\,}_{\,e\!f\!f}$ $\varepsilon \varepsilon_0$

Effective doping during emission:

 $N_{\text{eff}} = N_0 + N_t \cdot (1 - f(T))$

3-d Poole Frenkel ($\gamma = (qE/\pi \epsilon_{0} \epsilon_{r})^{1/2} q/(k_{B}T))$:

$$
e_{n} = \sigma_{n} v_{th,n} N_{c} \times \exp\left(\frac{-E a_{0}}{K_{b} T}\right) \left[\left(\frac{1}{\gamma^{2}}\right) \left(e^{\gamma}(\gamma - 1) + 1\right) + \frac{1}{2}\right]
$$

Capacitance:

Valence band (E_v)

22/02/22 Chuan Liao - Boron removal effect in silicon sensors 36/37

Finite element (Basic principle)

UHI

▔

Simplification (t for temperature $T(K)$, i stands for position):

Poisson equation (i $\leq m_t$):

$$
E_{i+1,t} - E_{i,t} = \frac{q_0 N \epsilon f f_{i,t}}{\epsilon \epsilon_0} \cdot \frac{d_t}{n}
$$
 and
$$
E_{i,t} = \sum_{i=0}^{m_t} \frac{q_0 N \epsilon f f_{i,t}}{\epsilon \epsilon_0} \cdot \frac{d_t}{n} - \sum_{j=0}^{i} \frac{q_0 N \epsilon f f_{j,t}}{\epsilon \epsilon_0} \cdot \frac{d_t}{n}
$$

$$
\sum_{i=0}^{m_t} E_{i,t} \cdot \frac{d_t}{n} = V
$$

Occupation fraction:

$$
f_{i,t} = \exp\left(-\sum_{t} e_{n,i,t}\right)
$$

Effective doping during emission:

$$
Neff_{i,t} = N_0 - N_t \cdot (1 - f_{i,t})
$$

3-d Poole Frenkel ($\gamma_{\rm i,t}$ =(q $\rm E_{i,t}$ / $\pi \epsilon_{\rm 0} \epsilon_{\rm r}$) $^{1/2}$ q/($\rm k_{\rm B}$ t)):

$$
e_{n,i,t} = \sigma_n v_{th,n} N_c \times \exp\left(\frac{-E_{a0}}{k_B t}\right) \left[\left(\frac{1}{\gamma_{i,t}}\right) \left(e^{\gamma_{i,t}} \left(\gamma_{i,t} - 1\right) + 1\right) + \frac{1}{2}\right]
$$

