Irradiation Studies on the TAPD-SiPM

Universität Hamburg

Julius Römer

University of Hamburg AG Detector Development, E. Garutti

22.02.2022

Novel TAPD-SiPM

- New SiPM design optimized for red sensitivity (application in LiDaR)
- Shows great performance in PDE, timing resolution and dynamic range

TAPD-SiPM in High-D

- Key requirement for high energy experiments: radiation hardness
- Is the radiation hardness competitive to planar devices?

Analysis

- Irradiation with neutrons
- Analysis of current-voltage characteristics

Planar Blue-Sensitive SiPM

PDE of blue-sensitive SiPMs [1].

Exemplary cross section of SiPM pixel [5].

Absorption length in silicon

Absorption of red light in silicon

\Rightarrow Deeper collection depth needed!

Spectal Response of Silicon

Planar Red-Sensitive SiPM

Tip Avalanche PhotoDiode (TAPD) Design

- Design developed by KETEK + MEPhI \rightarrow now broadcom
 - Quasi-spherical pn-junction allows depletion of thick layer at low voltage
 - No border \Rightarrow no border effects

Electrical Field

- Focused at the tip
- Large drift area ($r \approx 7 \, \mu {
 m m}$)
- Multiplication near tip ($r \approx 2 \, \mu {
 m m}$)

Structure is characterized by pillar diameter d_p .

Cross-section of TAPD-SPAD [2]

22.02.2022

TAPD-SiPM Performance

Julius Römer (University of Hamburg)

SiPM Prototype Design

Layout

- $1\times 1\,\mathrm{mm}^2$ array of 5016 pixel
- Bias supply and quenching resistor on top
- $\bullet\,$ Pixel pitch 15 $\mu{\rm m}$
- d_p : 0.6, 0.8 or 1.0 μ m
- \bullet Hexagonal Lattice: $\sim 83\%$ geometrical efficiency

22.02.2022

The Prototype under the Laser Microscope

Julius Römer (University of Hamburg)

1st High-D Consortium Meeting

8/23

Reverse Bias

Slope in dark current below breakdown

Planar device: 4832 pixel á $15 \cdot 15 \,\mu$ m from [6]

Reverse Bias

Determination of Breakdown Voltage

- Breakdown determined by current $\Rightarrow V_{BD}^{IV}$:
- Find minimum of Inverse Logarithmic Derivative $ILD = \frac{1}{I'}$ using Quadratic fit
- Precision of dark current measurement not sufficient:
 ⇒ determine Breakdown with *I*_{light}

10/23

Current Measurement

Keithley parameters

- Voltage source & ammeter: Keithley 6517B
- Sample on cold chuck for temperature control
- Air pump for fixation of sample
- Contact with needles
- Cold chuck in light tight box
- Dry air flux for humidity control
- Diffused LED light
- All cables & box shielded with ground potential

The SiPM on the Cold Chuck

Effects of hadronic irradiation

Effects on the SiPM

- Change in N_{eff} : Possibly shift of V_{BD}
- Change of quenching resistance
- Increase in DCR
- Possibly change in PDE

Irradiation

- For each pillar size ($d_p=$ 0.6, 0.8, 1.0 μ m) irradiation with neutrons
- Fluences: $\Phi = 10^{10}, \ 10^{11}, \ 10^{12} \ \frac{\mathrm{neq}}{\mathrm{cm}^2}$
- Irradiation in nuclear reactor at Jozef Stefan Institute Ljubljana

Dark Current after Irradiation

Dark current of irradiated planar SiPMs

1st High-D Consortium Meeting

Dark Current above Breakdown

22.02.2022

UH

Approximation of DCR and Pixel Occupancy

Extract noise rate and pixel occupancy using (IV) measured values and knowledge on Δt : Use current model for $V > V_{BD}$:

$$I_{dark} = G \cdot q_0 \cdot DCR(1 + CN) = G \cdot q_0 \cdot \frac{N_{pix} \cdot \eta_{DC}}{\Delta t}$$

- *DCR*: Dark Count Rate, *CN*: Correlated Noise (afterpulse & crosstalk), $G \cdot q_0 = (V_{Bias} - V_{BD}) \cdot (C_{pix} + C_q)$, and C_{pix} , C_q : pixel and quenching capacitance
- η_{DC} : pixel occupancy due to dark counts, N_{pix} : # of pixels, Δt : pixel recovery time

Approximation of DCR and Pixel Occupancy

$$\eta_{DC} = \frac{I_{dark} \cdot \Delta t}{G \cdot q_0 \cdot N_{pix}} = \frac{I_{dark} \cdot R_q}{(V_{Bias} - V_{BD}) \cdot N_{pix}}$$

$$\text{With}$$

$$\Delta t \approx \tau = (V_{Bias} - V_{BD}) \cdot R_q$$

$$\text{Take } R_q = 671 \pm 2 \, \mathrm{k\Omega} \text{ from}$$

$$\text{forward } I - V \text{ of single pixel}$$

• Take $V_{BD} = V_{BD}^{IV}$

 \Rightarrow Pixel occupancy @ 5 V for $\Phi=10^{12}:0.2\%$

Approximation of DCR and Pixel Occupancy

$$DCR(1+CN) = \frac{N_{pix} \cdot \eta_{DC}}{\Delta t}$$

Take $\Delta t = \tau = 4.5$ ns from [2]

$\frac{DCR}{mm^2}$ @ $V_{over} = 4.5$	$\Phi = 0$	$\Phi = 10^{12}$
Planar	480 kHz	29.5 GHz
TAPD	800 kHz	1.8 GHz

Normalised Photocurrent

- $I_{photo} = I_{light} I_{dark}$
- $I_{photo}^{norm} = \frac{I_{photo}}{I_{photo}(V=10)}$
- Enables comparison of response to light
- $I_{photo}^{norm} = q_0 \cdot G \cdot PDE \cdot (1 + CN)$
- If $\frac{I_{photo}^{norm}(\Phi)}{I_{photo}^{norm}(\Phi=0)} \neq 1$ \Rightarrow Change due to irradiation

Normalised Photocurrent

Normalized Photocurrent of planar device: Variation within 10 %

Normalised Photocurrent

 \Rightarrow Deviation less than 5 %. No trend visible. Further knowledge on G and CN desired.

Julius Römer (University of Hamburg)

22.02.2022

5

Conclusion

- Characterisation of promising SiPM ongoing
- Increase of DCR with irradiation smaller for TAPD than for planar device
- Response to light requires further examination
 - \rightarrow charge measurements (*DCR*, V_{BD}^{G} , *G*, *CN*, etc.)

More on TAPD @ DPG Frühjahrstagung by Wolfgang Schmailzl (broadcom) and me

References I

[1] A. N. Otte et

Al. "Characterization of three high efficiency and blue sensitive silicon photomultipliers". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectromete 846 (2017), pp. 106–125.

- [2] E. Engelmann et Al. "Tip Avalanche Photodiode A new generation Silicon Photomultiplier based on non-planar technology". In: Nucl. Instrum. Methods Phys. Res. A 737 737 (2014).
- [3] E. Garutti et Al. "Characterisation of highly radiation-damaged SiPMs using current measurements". In: (2017).

References II

- [4] F. Acerbi et Al. "Silicon photomultipliers and single-photon avalanche diodes with enhanced nir detection efficiency at fbk". In: <u>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectromete</u> IEEE. 2018.
- [5] L. E. Büttgen. "Investigation of neutron-induced radiation damage on SiPMs". University of Hamburg, 2020.
- [6] M. S. Nitschke. "Characterization of Silicon Photomultipliers Before and After Neutron Irradiation". MA thesis. University of Hamburg, 2016.

Appendix

SiPM Prototype Design

Determination of quenching resistance

Tip Avalanche PhotoDiode (TAPD) Design

Design by KETEK + MEPhI

- Quasi-spherical pn-junction allows depletion of thick layer at low voltage
- No border \Rightarrow no border effects

Electrical Field

- Focused at the tip
- Large drift area ($rpprox 7\mu{
 m m}$)
- Multiplication near tip ($r \approx 2 \mu m$)

Structure is characterized by pillar diameter d_p .

Electric Field Simulation [2]

Appendix

Normalised Photocurrent

Comparison with highly irradiated SiPMs [3]:

