

A reconfigurable CMOS sensor for digital EM calorimetry (AP 3.2)

Lucian Fasselt ¹, Cigdem Issever ¹², Hannsjörg Weber ¹, Steven Worm ¹² 22nd February 2022

¹ Humboldt University, Berlin, Germany
² Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany

In collaboration with Rutherford Appleton Laboratory and University of Birmingham, UK **HELMHOLTZ** RESEARCH FOR GRAND CHALLENGES

Digital EM calorimetry

Comparison with conventional analogue ECAL

Sum number of particles in each layer Requirement: High granularity to avoid saturation

Simulated digital ECAL shows better σ_E/E than analogue one

- Bethe-Bloch formula gives mean energy loss
- Deposited energy in detector fluctuates, following Landaudistribution for thin absorbers
- Stochastic term reduced by 20% as landau fluctuation from energy deposition vanishes
- High granularity benefitial for particle flow algorithms and identification of pileup

P. Dauncey et al. (2011) *Performance of CMOS sensors for a digital electromagnetic calorimeter*, Proc. 35th International Conference on High Energy Physics, July 22–28 2010, Paris, France.

The DECAL chip

A monolithic active pixel sensor prototype

- $55 \times 55 \,\mu\text{m}^2$ pixels in a 64×64 pixel matrix Fabricated in the TowerJazz 180 nm CMOS optical process using 18 um epitaxial Si layer
- Reconfigurable digital readout logic as:
 - 1x64 pixel strips for tracking
 - 16x64 pixel pads for calorimetry
- One pixel with analogue readout in top left corner

- Max 3 hits/strip ٠
- Higher granularity ٠

- 240 hits/pad
- More counts per strip while maintaining lower data rate

Electronics

Sensor DECAL

DECAL setup

- 4 chips and motherboard schematics received from Jens Dopke (RAL, UK)
- Motherboard produced at DESY Zeuthen
- **Digilent Nexys Video Board**
- Data acquisition via ATLAS ITSDAQ software
- 40 MHz readout

Measurement procedure

Sketch and measurement of laser illumination

- Despite digital readout, one pixel has analogue as well
- Signal from defocused $10x10\mu m^2$ TriLite laser (pJ/pulse, λ =1064 nm)

April 2020

P. Allport et al., First tests of a reconfigurable depleted MAPS sensor for Digital Electromagnetic Calorimetry, Nucl. Inst. and Meth. A, 958:162654,

Finding noise level per pixel

Threshold scan of one row with untuned and tuned pixels

Tuning each pixel with 6 Bit calibration DAC with bias current of 100 μA

Each pixel has 6 bit calibration DAC for tuning

Masked +/- 31mV 15.5mV 7.75mV 3.875 mV

- Calibration DAC has input/ bias current (here 100 μ A)
 - defines value of last 4 bits → range and resolution of tuning
- · Aim is narrow distribution of means around nominal value

Mean values of pixels tuned to 1.17 V

DAC bias current of $75\mu A$ sufficient to tune all pixels

untuned pixel within 100 mV tuned pixel within 7 mV and FWHM = 2 mV

Homogeneous distribution of means over pixel matrix after tuning

Pixels tuned to internal noise allows looking into signal from laser light, X-rays or <u>radioactive sources</u>

²⁴¹Americium source measurement

Measurement in the proximity of the noise peak with the DECAL sensor at HU

Low activity of 300 kBq of 60 keV photons \rightarrow activate whole chip for higher statistics •

Page 9/10

Summary and outlook into the next 6 months:

- DECAL has potential to improve energy resolution
- DECAL test stand was set up at HU in collaboration with DESY
- Tuning to noise peak
 - Successful pixelwise tuning
 - Improved strip mode tuning \rightarrow Identification of Americium shoulder $\sqrt{}$
 - Further investigation of strip mode calibration
- Energy calibration to be done with higher statistics of signal
 - Higher activity gamma sources at DESY or X-ray source at UK
 - Laser illumination of individual pixels
- Give feedback to chip designers for a revision of the chip

In collaboration with:

P. Allport¹, S. Benhammadi², R. Bosley¹, J. Dopke², S. Flynn¹, N. Guerini², L. Gonella¹, I. Kopsalis¹, K. Nikolopoulos¹, P. Philips², T. Price¹, A. Scott², I. Sedgwick², E. G. Villani², M. Warren³, N. Watson¹, F. F. Wilson², A. Winter¹, Z. Zhang²

¹ School of Physics and Astronomy, University of Birmingham, UK

² STFC Rutherford Appleton laboratory, Didcot, UK

³ Department of Physics and Astronomy, University College London, UK

Comparison with conventional EM calorimetry 2

Simulation of four different geometries

- 4 different geometries simulated for digital and analogue
- Similar performance of DECAL up to 300 GeV
- above 300 GeV saturation leads to undercounting
- Lead improves saturation as its larger Moliere Radius makes EM shower wider

Saturation in pixels begin

CLICdp Meeting (27/08/2019) Robert Bosley

²⁴¹Americium source (left) and background (right) measurement

Measurement in the proximity of the noise peak with the DECAL sensor at HU

Analogue readout for one pixel

Simulation and measurement

Some delay in measured response time with respect to FE simulation (but expect ~10ns signal collection)

Signal from:

 $10x10\mu m^2$ TriLite laser (pJ/pulse, λ =1064 nm)

Threshold scan under laser illumination

Defocused IR laser (1064nm) with pulse frecuency of 100 kHz

- Signal below and above noise peak detected ٠
- Shape reflects gaussian profile of defocused laser beam
- Broad noise band for strip mode ٠

- Time response within one bin of 25 ns
- For detector application: measurement just for ٠ one threshold value and not threshold scan

Towerjazz modified process and pixel architecture

Preamplifier, shaper, discriminator, comparator and tuning logic integrated in each pixel

- Threshold depends on inputs, e.g. ٠ variations in the input currents to preamplifier, shaper and feedback circuits
- Tuning logic through 6 Bit DAC ٠
- Towerjazz modified process with ٠ gap in the n-layer
 - Improved radiation hardness and faster charge collection

Τ,

Figure 2 Overview of the architecture of the pixel.

DECAL: A Reconfigurable Monolithic Active Pixel Sensor for use in Calorimetry and Tracking

S. Benhammadi*, J. Dopke, N. Guerrini, P. Phillips, I. Sedgwick, G. Villani, F. Wilson, Z. Zhang, M. Warren, P.P. Allport, R. Bosley, S. Flynn, L. Gonella, I. Kopsalis, K. Nikolopoulos, T. Price, N. Watson, A. Winter and S. Worm