

Effect of self-heating in silicon-photomultipliers

C. Villalba^a, E. Garutti^a, R. Klanner^a, E. Popova^b, S. Martens^a, J. Schwandt^a

a) University of Hamburg, Hamburg, Germanyb) National Research Nuclear University MEPhI, Moscow, Russia

SPONSORED BY THE

Federal Ministry of Education and Research

carmen.villalba@desy.de

Carmen Villalba - SiPM Self-Heating

Aim

- Develop a method for determining SiPM temperature increase induced by dissipated power (self-heating) $\Delta T_{\text{SiPM}(P)}$ with $P = I_{SiPM} \cdot U_{bias}$
- Relevant for applications of SiPMs in:
 - High background light (LIDAR, HEP, astrophysics) \rightarrow High I_{photo}
 - High radiation environment (LHC, FCC, satellite experiments) \rightarrow High I_{dark}(~1 mA, T = -30 °C, ϕ_{eq} ~10¹³ cm⁻²)
- The SiPM performance changes with T:
 - Photo-current at fixed $\rm U_{\rm bias}$ and constant photon rate, decreases with T

 $I_{photo} \propto PDE(T) \cdot Gain(T)$

• Explained by T dependence of breakdown voltage (U_{bd}):

Universität Hamburg

Method

• Express the T dependence of photo-current as:

$$\frac{dI_{photo}}{dT} = \frac{dI_{photo}}{dU} \cdot \frac{dU_{bd}}{dT}$$

• A relative change in photo-current is related to a change in T by the **sensitivity**

$$\frac{\Delta I_{photo}}{I_{photo}} = \alpha_1 \cdot \Delta T \qquad \text{Sensitivity:} \quad \alpha_1 = \frac{1}{I_{photo}} \cdot \frac{dI_{photo}}{dU} \cdot \frac{dU_{bd}}{dT} \left[\frac{\%}{K}\right]$$

- Typical sensitivity: (0.4 1) %/K
- Precision data required: LED-stability, I-measurement, U-setting.

Universität Hamburg

Setup

- SiPM KETEK non-irradiated (MP15V09 D2.8)
 - d_{si}= 700 μm
 - V_{bd} = 27.5 V @25°C, C_{pix} = 18 fF, T = 14 ns
 - Pixel size = 15 μ m, 27000 pixels
- SiPM mounted on alumina (Al₂O₃) substrate:
 - d_{Al2O3}= 600 μm
- Cooling system: temperature-controlled chuck
- PVC (1.2 and 3.2 mm) between the alumina and cold chuck to emulate degraded thermal contact.
- Three T sensors (PT-100)
- Illumination: LED (470 nm)

Sensitivity calibration

Sensitivity: $\alpha_1 = \frac{1}{I_{photo}} \cdot \frac{dI_{photo}}{dU} \cdot \frac{dU_{bd}}{dT} \left[\frac{\%}{K}\right]$

 Measure the calibration at known and stable T_{chuck}, avoiding saturation due to occupancy (~1%):

Calibration data: 5 LED intensities

- Calibration at several LED currents leads to the same sensitivity curve.
- Measure in the T range of relevance

Analysis method

Exemplary demonstrated for measurements with:

- PVC 3.1 mm, U_{bias} = 38 V
- I_{LED} = 0.47 mA, P = 58 mW:

$$\Delta T_{SiPM(t_1,t_2)} = \frac{\left(I_{photo}(t_2) - I_{photo}(t_1)\right)}{\alpha_1 \cdot I_{photo(t_1)}} = \frac{\Delta I_{photo}}{\alpha_1 \cdot I_{photo(t_1)}}$$

with t_1 time of the 1st measurement after switching on the LED.

- From sensitivity calibration for U_{bias} = 38 V $\rightarrow \alpha_1$ = 0.39 %
- Observed: $\frac{\Delta I_{photo}}{I_{photo}} = 0.73\%$
- Calculated: $\Delta T_{SIPM} = 1.87 \text{ K}$
- As expected from heat flow: $\Delta T_{sensor1} = 1.47 \text{ °C} > \Delta T_{sensor2} = 1.06 \text{ °C} >> \Delta T_{sensor3} = 0.04 \text{ °C}$

T oscillations due to feedback loop of the temperature-controlled chuck

High-D Consortium Meeting 22.02.2022

Results for good thermal contact (no PVC)

Carmen Villalba - SiPM Self-Heating

- $\Delta T_{\text{SIPM}} \sim 0.5$ K, for P = 47 mW reached in ~ 2 s. $\Delta U_{\text{bd}} = 12$ mV
- T oscillations due to feedback loop of the temperature-controlled chuck:
 - $\mathbf{T}_{_{sensors}}$ with the same amplitude and phase
 - T_{siPM} anti-correlated with I_{photo} an increase in T_{siPM} causes a decrease of I_{photo}

→ Phase shift of 180° between $T_{sensors}$ and I_{photo} demonstrates good thermal contact between chuck and SiPM multiplication region.

8

Results for degraded thermal contact (1.2 mm PVC)

 $\Delta T_{SIPM} \sim 2 \text{ K}$, for P = 51 mW, reached in $\sim 60 \text{ s}$. ٠ $\Delta U_{hd} = 37 \text{ mV}$

- T oscillations due to feedback loop of the temperature-controlled chuck:
- Due to the increased thermal resistance \rightarrow change on the amplitude and phase of $\Delta T_{sensor1}$ and $\Delta T_{sensor2}$ relative to $\Delta T_{sensor3}$

Cross-check

Universität Hamburg

• T-oscillations to check $\Delta T_{_{SIPM}}$ determination:

- No PVC and $I_{photo} = 1.225$ mA:
 - Fitting data to obtain amplitude of both T and I_{SIPM}

$$\alpha_2 = \frac{A_{T_{sensor 1}}}{A_{I_{SiPM}}} = 0.23 \frac{\circ C}{\mu A}$$

 Current normalized to the maximum value of the data without PVC

$$\Delta T_{SiPM} = \alpha_2 * \Delta I_{SiPM}$$

- For P = 47 mW
$$\rightarrow \Delta T_{sipm}$$
 = 0.62 K

Cross-check of results

• Both methods agree: same T_{SIPM} increase from the measured current within a 10%

		P [mW]	ΔT _{SiPM} [K]	Cross-check ΔΤ _{SIPM} [K]	Rel. difference
U _{bias} = 38 V T _{chuck} = 25 °C	no PVC	46.55	0.56	0.62	10.3%
	PVC (1.2 mm)	50.81	1.74	1.91	9.5%
	PVC (3.1 mm)	57.68	1.87	2.03	8.6%

Conclusions: results presented are preliminary

- Development of a method to determine the heating of SiPMs from its current
- The SiPM is illuminated by a LED and I_{SiPM}(t) is measured at constant U_{bias} and changing the LED current
- Heating causes an increase in U_{bd} and a decrease in I_{SIPM} . For the SiPM investigated $dU_{bd}/dT = 21 mV/K$ using calibration data.
- The method has been used to determine the temperature increase and time constants of a SiPM with P ~ 50mW, expected for instance in SiPM (MPPC HPK) irradiated to ϕ_{eq} ~10¹³ cm⁻² operated ~ 2V (OV)
- For different thermal resistances between SiPM and the temperature-controlled chuck, we obtained:
 - For good thermal contact: $\Delta T_{siPM} \sim 0.5 \text{ K}$, $\Delta U_{bd} = 12 \text{ mV}$
 - For degraded thermal contact (similar to SiPM mounted on PCB): $\Delta T_{\text{SiPM}} \sim 2 \text{ K}, \Delta U_{\text{hd}} = 40 \text{ mV}$
 - Only minor difference in heat increase with different thickness of PVC isolation.
- Simple cross-check with a calibration obtained at high I_{LED} confirms within 10% the T_{SIPM} increase.

Conclusions: results presented are preliminary

- Development of a method to determine the heating of SiPMs from its current
- The SiPM is illuminated by a LED and I_{SIPM}(t) is measured at constant U_{bias} and changing the LED current
- Heating causes an increase in U_{bd} and a decrease in I_{siPM} . For the SiPM investigated $dU_{bd}/dT = 21 mV/K$ using calibration data.
- The method has been used to determine the temperature increase and time constants of a SiPM with P ~ 50mW, expected for instance in SiPM (MPPC HPK) irradiated to ϕ_{eq} ~10¹³ cm⁻² operated ~ 2V (OV)
- For different thermal resistances between SiPM and the temperature-controlled chuck, we obtained:
 - For good thermal contact: $\Delta T_{siPM} \sim 0.5 \text{ K}$, $\Delta U_{bd} = 12 \text{ mV}$
 - For degraded thermal contact (similar to SiPM mounted on PCB): $\Delta T_{\text{SiPM}} \sim 2 \text{ K}, \Delta U_{\text{bd}} =$ 40 mV
 - Only minor difference in heat increase with different thickness of PVC isolation
- Many thanks for your attention! Simple cross-check with a calibration obtained at high I_{LED} confirms within 10% the T_{SIPM}

Backup slides

Implementation of Analysis method for constant U

For the calibration data I_{cal} (U_{cal}, T_{chuck}):
1.1) Spline fit to obtain U_{cal} (I_{cal})

1.2) Normalise $U_{cal}(I_{cal})$ to U_{meas} (fixed U_{bias})

2) For the measured current $I_{meas}(t)$:

2.1) Normalise $I_{norm}(t) = I_{meas}(t)/I_{meas}(t+)$, where t+ is the time of the 1st measurement after switching I_{LED}

3) Then calculate $\Delta U(t) = U_{meas} - U_{cal}(I_{norm}(t))$

4) Finally, determine
$$\Delta T_{SiPM} = \frac{\Delta U(t)}{dU_{bd}/dT}$$
, with $dU_{bd}/dT = 21 mV/K$

meas

Measurements for self-heating (I_{IFD}-steps)

- $I_{\mbox{\tiny SIPM}}$ and T sensors recorded with step 0.5 s
- Cycle with fixed applied Voltage:
 - 320 s with LED off (I_{dark} , I_{LED} = 0 mA)
 - 320 s with LED on ($I_{dark} + I_{photo-low}$, $I_{LED} = 0.02$ mA)
 - 320 s with LED on ($I_{dark} + I_{photo-high}$, $I_{LED} = 0.47$ mA)
 - 320 s with LED off (I_{dark} , I_{LED} = 0 mA)
- LED intensity tuned to have $I_{\mbox{\tiny SIPM}}\,{\sim}\,1\,\mbox{mA}$
- Measurements with efficient thermal contact: without PVC
- To degrade the thermal contact: PVC layers of thickness 1.2mm and 3.1 mm

Operation parameters

- Universität Hamburg
- Operate non-irradiated SiPM under LED illumination at the same current as expected for irradiated SiPM
- Dark current increase with fluence, in particular for this study we want to emulate the power dissipated in an irradiated SiPM:

Dark current (LED = 0 mA)

Universität Hamburg

• U_{bias} = 38 V and T_{chuck} = 25 °C :

• For I_{dark} (current depends on thermal generation, T increase and I_{dark} increase as well):

 \rightarrow With good thermal contact T_{sensors} and I_{dark} are in phase with the same amplitude

 \rightarrow For bad thermal contact, due to thermal diffusion there is a change on the amplitude and phase ready T_{sensor1} and T_{sensor2} (on top of the alumina) compared with the sensor on the cold chuck.