R&D of 4 Cell Prototype WOM-based Liquid-Scintillator Detector

1st High-D Consortium Meeting AP2.1

Fairhurst Lyons Universität Freiburg February 21, 2022

RWTH Aachen, Humboldt-Universität zu Berlin, Forschungszentrum Jülich, Johannes Gutenberg Universität Mainz

Experimental Motivation

- Aim: build large-scale (O(1000) m²) liquid-scintillator (LS) based detector for high dimensional resolution
 - Spatial
 - Time
 - Energy
- LS provides:
 - High hermicity and efficiency
 - Low cost
- Wavelength-shifting optical modules (WOMs) provide:
 - Sufficient light collection with small-area photon-detectors
 - Time resolution
 - Spatial info from LS cell granularity/WOM positioning
 - Directional info from timing/light yield sharing between WOMs
- Potential applications in particle physics
 - Particle identification
 - Background tagging

SHiP Experiment

- Proposed experiment at CERN SPS [1]
- 400 GeV protons dumped in high-density target
- Muon shield deflects muons out of beam line
- Scattering and neutrino detector for light dark matter searches
- Hidden sector decay volume: vacuum vessel
- Reconstruction of hidden sector decays in spectrometer

SHiP Background Sources

- Hidden sector particle decay \rightarrow isolated vertex
- Particles originating from outside could mimic signal event
- Aim: detect
 - Deep inelastic scattering of muons/neutrinos in vessel walls
 - Muons entering vessel from outside
- Solution: Surround Background Tagger outside decay vessel based on WOM-LS technology

Surround Background Tagger

- = 50 m long, upstream: 2 \times 4 m, downstream: 5 \times 10 m
- \sim 2000 individual cells with steel walls
- = 30 cm deep, 80 cm wide, height \sim 80-150 cm
- Parallelepiped shaped cells
- Filled with LS, WOMs catch light for readout by silicon photomultipliers (SiPMs)

Previous Prototypes

- $50 \times 50 \times 25$ cm cell tested at CERN in 2017 SPS [3]
- $118 \times 78 \times 31$ cm cell tested at CERN/DESY in 2018/19 [2]
- Detector efficiency can be improved with
 - Higher efficiency SiPMs
 - LS purification
 - Increase of absorption probability in WOMs
 - Increase of cell wall reflectivity
 - Better SiPM-WOM coupling

4 Cell Prototype

- Aim: build and test first 4 cell prototype
- 2 WOMs per cell
- = $~\sim 120 \times 80 \times 30$ cm per cell
- Test beam application to tune:
 - Cell construction
 - Filling/emptying
 - Material compatibility
 - Electronics
 - Monte Carlo simulation
 - Reconstruction capabilities

Support Structure

- Must hold cells weighing ${\sim}2$ tonnes
- Translation and 180° rotation in 2 dimentions (X, Y)
- Want to test trajectories with beam incident on any face of cells with beam angle between 0-90 $^\circ$
- Overflow tank to ensure complete filling and no bubbles in LS

Electronics

- Array of 40 3 \times 3 mm SiPMs
 - Hamamatsu S1416-3050HS
 - onsemi J-Series 30035
- Readout:
 - Short term: commercial multichannel board (Citiroc/Triroc) plus preamplifier and ADC
 - Long term: custom preamplifier with integrated ADC, feature extraction, transmitter, and HV supply (AP3.5)

WOM Integration

- PMMA housing
 - Ensure air gap for reflection
 - Hold WOM in place
 - Minimal touching to catch maximum amount of light
- Flange
 - Must be light tight
 - Couple SiPM array to WOM
 - Transmit signal from SiPM to board

- 1 cell in 2022 for DESY test beam (e-) and cosmics (μ)
- 4 cells in 2023/24 for CERN test beam (μ)
- Design aspects in development:
 - Support structure
 - WOM wavelength-shifting coating
 - Cell reflectivity coating
 - WOM mounting
 - Readout electronics

[1] C. Ahdida et al.

The SHiP experiment at the proposed CERN SPS Beam Dump Facility.

12 2021.

[2] Jan Zimmermann.

Efficiency studies of a liquid-scintillator detector based on wavelength-shifting optical modules.

Master's thesis, Humboldt-Universitaet zu Berlin, 2020.

- [3] M. Ehlert, A. Hollnagel, I. Korol, A. Korzenev, H. Lacker,
 P. Mermod, J. Schliwinski, L. Shihora, P. Venkova, and
 M. Wurm.
 - **Proof-of-principle measurements with a liquid-scintillator detector using wavelength-shifting optical modules.** *Journal of Instrumentation*, 14(03):P03021–P03021, Mar 2019.