

High-D Consortium Meeting 21 - 22.02.2022

Material Budget Imaging with ALPIDE sensors

Bogdan Mihail BLIDARU

21.02.2022

ALICE detector - the Inner Tracking System (ITS2)

- ALICE is the heavy-ion physics-focused experiment at the LHC
- Main goal: study of the quark-gluon plasma in heavy-ion collisions
- > Currently LHC LS2 \rightarrow detector upgrades
- Inner Tracking System 2 (ITS2)

2

7 μm²

ITS2 (installed)

- Entirely MAPS based detector design
- Seven layers of ALPIDE sensors
- Increased vertexing and tracking performance with respect to the ITS
 - Layer 0 closer to IP: $39mm \rightarrow 23mm$
 - Reduced material budget (x/X₀) per layer: $1.14\% \rightarrow 0.35\%$

> ALPIDE

 \succ

- $\circ~$ 30×15 mm, 50(100) μm thick IB(OB), 29×27 μm^2
- Full CMOS circuitry within the pixel matrix
- 180 nm CMOS IP
- $\circ~~5~\mu m$ spatial resolution, ≫ 99% detection efficiency, $~~~~10^{-6}$ fake hits /px /event, ~40 mW/cm²
- ITS2 is a state of the art MAPS detector
- Further improvements are possible

ALICE detector - ITS2

ALICE detector - what the future entails

 \succ

 \succ

Motivation for the ITS3

 Si accounts for 1/7th of the total material (irregularities due to support/cooling)

- Si accounts for 1/7th of the total material (irregularities due to support/cooling)
- Removal of water cooling possible
 if power consumption < 20 mW/cm²
 (ALPIDE: 40 mW/cm², 7 mW/cm² matrix)
- Removal of the circuit board for power distribution and data lines possible
 - → if integrated on chip (make single large chips, use CMOS metal layers)
- ➤ Move mechanical support outside acceptance → benefit from self-supporting bent Si (+ ultra-light carbon foam spacers)

An almost all-Si detector is possible! Ultra-light spacers needed!

Engineering Model 1 with carbon foam wedges

- Engineering Model 1 (half barrel)
- Several types of foams considered (structural, thermal considerations)
- ➢ Top choice: ERG, ALLCOMP

Carbon foam Glue Impregnated fleece

- Noticed glue infiltration (capillarity) in the foam
 → add carbon fleece
- Aim: study material budget of such a wedge composite

6 mm thick foam + 50 μm fleece + 50 μm glue + 50 μm silicon

- Mimic an ITS3 <u>layer</u> by glueing a carbon foam wedge to an ALPIDE
- > Place inside a 6 plane telescope and subject it to a beam of particles
- Measure (extra) scattering due to extra material (foam)
- Active ALPIDE + non-working ALPIDE

```
L × I × w
10 × 3 × 6 [mm]
Glue foam Glue
```


Material budget imaging of carbon foam wedges

Intermezzo: Multiple Coulomb Scattering

Source: PDG

 \succ

- The trajectory is altered due to many small deflections (Multiple Coulomb Scattering) or to a single large deflection (Single Rutherford Scattering)
- Distribution: Gaussian core (98%) with non-Gaussian tails
 → width given by:

Expect broader distribution for extra material

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

(Highland formula)

Source: 10.1103/PhysRevAccelBeams.20.124702

ALICE

MBI: Paul Schütze, Jan-Hendrik Arling

Tracking
 → require 4 (3) hits in each up(down)-stream telescope arms to form tracklets
 → account for scattering in air and Si before/after the foam composite (General Broken Lines)

Tracklets connect along z in the middle of the foam, where an arbitrary kink of the track is allowed, representing the scatterer
 → here, a virtual reconstruction plane is defined and divided into image cells (100µm × 100µm)

Correlations

- \succ Two independent measurements of the particle's deflection angle: horizontal and vertical plane, k_x and k_y
- ➤ x and y-axis are orthogonal to each other + quantum mechanical nature of the scattering processes \rightarrow the two kink values (k_x, k_y) are fully uncorrelated
 - \rightarrow measurements (RMS(k_x), RMS(k_y)) in x and y used as independent estimators (twice the statistics)

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

 Unknown X₀ for fleece, glue and foam; estimated from densities or basic principles

	ERG	ALLCOMP
ρ (g/cm ³)	0.06	0.2
X ₀ (mm)	7116	2135
x/X ₀ (%)	0.084	0.28

Spatially resolved scattering angle hitmap

- Width of kink angles within a cell (100µm × 100µm): spatially-resolved scattering angle map
- Foam sample recognizable by more scattering

Kink angle distributions: foam vs no-foam

- Define regions of interest
 - \rightarrow FOAM only area
 - \rightarrow NO FOAM area
- Compute distribution of kink angles
- Gauss fit (98% core ~2.33σ, no tails)

Square kink vs incidence position

Final results

$$\sigma_{\text{diff}} = \sqrt{\sigma_{98\% \text{ FOAM}}^2 - \sigma_{98\% \text{ NO FOAM}}^2}$$

ALLCOMP LD

p [GeV]	$\sigma_{_{FOAM}}$	$\sigma_{_{\rm NOFOAM}}$	$\sigma_{_{ m diff}(m quadr)}$	$\boldsymbol{\theta}_{0 \; \text{Highland}} \left[\text{mrad} ight]$
1	0.978	0.623	0.754	0.764
5.4	0.299	0.258	0.151	0.141

ERG DUOCELL

p [GeV]	$\sigma_{_{FOAM}}$	$\sigma_{_{\rm NOFOAM}}$	$\sigma_{\rm diff~(quadr)}$	$\theta_{0 \text{ Highland}}[mrad]$
1	0.787	0.608	0.5	0.579
2.4	0.396	0.337	0.208	0.241
5.4	0.276	0.258	0.098	0.107

Final results

$$\sigma_{\text{diff}} = \sqrt{\sigma_{98\% \text{ FOAM}}^2 - \sigma_{98\% \text{ NO FOAM}}^2}$$

ALLCOMP LD

p [GeV]	$\sigma_{_{FOAM}}$	$\sigma_{_{NOFOAM}}$	$\sigma_{_{ m diff}(m quadr)}$	$\boldsymbol{\theta}_{0 \; \text{Highland}} \left[\text{mrad} \right]$
1	0.978	0.623	0.754	0.764
5.4	0.299	0.258	0.151	0.141

ERG DUOCELL

p [GeV]	$\sigma_{_{FOAM}}$	$\sigma_{_{NOFOAM}}$	$\sigma_{\rm diff~(quadr)}$	$\theta_{0 \text{ Highland}}[\text{mrad}]$
1	0.787	0.608	0.5	0.579
2.4	0.396	0.337	0.208	0.241
5.4	0.276	0.258	0.098	0.107

- > Material budget imaging \rightarrow powerful technique for measurements of the material budget
- For the carbon foam choice in ITS3
 - \rightarrow ERG DUOCELL_AR shows the best results in terms of scattering

- Carbon foam support for next-generation Inner Tracking System in LHC LS3
- Based on wafer scale, ultra-thin bent MAPS
 - \rightarrow ITS3 will push the technology even further, approaching a massless detector