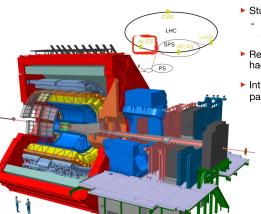
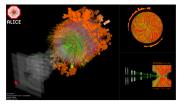
Towards the ALICE ITS3: mechanical intergration of the super-ALPIDE

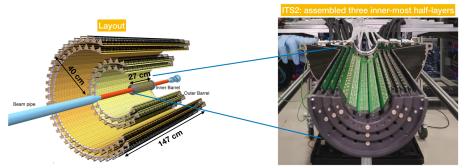
Alperen YÜNCÜ

February 21, 2022

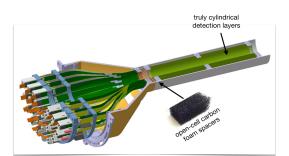



ALICE

Detector and main goals



- Study of QGP in heavy-ion collisions at LHC
 i.e. up to O(10k) particles to be tracked in a single event
- ► Reconstruction of charm and beauty hadrons
- ► Interest in low momentum (≤1 GeV/c) particle reconstruction


ITS2

It is fabricated in MAPS(Monolithic Active Pixel Sensor) technology. Using TowerJazz $180\,\mathrm{nm}$ process. Cover $10\,\mathrm{m}^2$ features $12.5\,\mathrm{Gpx}$.

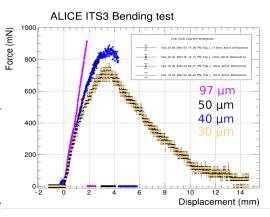
- ▶ ITS2 is expected to perform according to specifications or even better
- The Inner Barrel is ultra-light but rather packed → further improvements seem possible
- Key questions: Can we get closer to the IP? Can we reduce the material further?

ITS3 Detector Concept

Beam pipe Inner/Outer Radius (mm)	16.0/16.5		
IB Layer Parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	18.0	24.0	30.0
Length (sensitive area) (mm)	300		
Pseudo-rapidity coverage	±2.5	±2.3	±2.0
Active area (cm²)	610	816	1016
Pixel sensor dimensions (mm²)	280 x 56.5	280 x 75.5	280 x 94
Number of sensors per layer	2		
Pixel size (μm²)	O (10 x 10)		

Key ingredients:

- 300 mm wafer-scale chips, fabricated using stitching (65 nm TowerJazz process)
- thinned down to $20^{\circ}\!\!\!-\!40~\mu\mathrm{m}$ (0.02-0.04% X0), making them flexible
- bent to the target radii
- mechanically held in place by carbon foam ribs

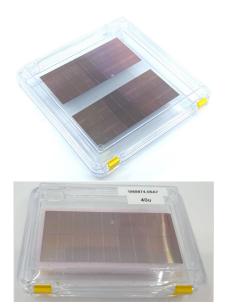

Key benefits:

- extremely low material budget: 0.02-0.04% X0(beampipe: 500 μm Be: 0.14% X0)
- -homogeneous material distribution: negligible systematic error from material distribution

THE WHOLE DETECTOR WILL COMPRISE SIX (!) CHIPS (CURRENT ITS IB: 432) - AND BARELY ANYTHING ELSE

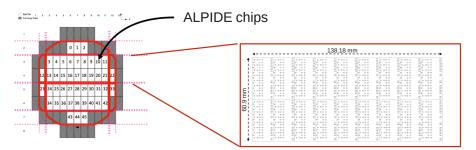
Flexibility of silicon

- Monolithic Active Pixel Sensors are quite flexible
 - already at thicknesses that are used for current detectors
- Bending force scales as (thickness)⁻³
 - large benefit from thinner sensors
- Breakage at smaller radii for thinner chips
 - again benefit from thinner sensors
- Our target values are very feasible!

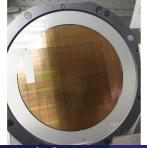


Challenges for the new sensor chips

- 300 mm wafer-scale chips
- thinned down to $20\text{-}40\,\mu\mathrm{m}$



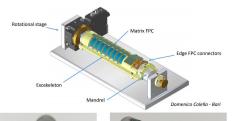
Super ALPIDE Chips



- To study the bending and interconnection of large pieces of processed chips, "super-ALPIDE" is built
- Comprises of 1 silicon piece cut from an ALPIDE wafer size of 14 cm×6 cm

Super ALPIDE Chips

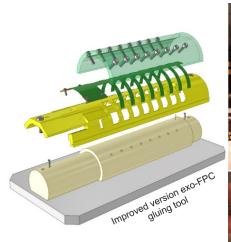
- Super-ALPIDEs are actually an array of ALPIDES.
- They consist 9 × 2 ALPIDE chips.

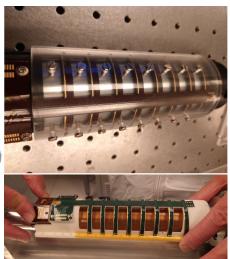

Super ALPIDE Chips

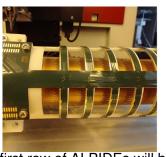
- Tested different methods how to pick large and very thinned chips
 - Die-ejector with fine grid is quite efficient.

Exoskeleton

Super-ALPIDE wire-bonding setup






- 3-D printed.
- Designed to support super-ALPIDEs after bending.
- Windows to reach interconnection points at middle of super-ALPIDE
- FPC glued for connections

Gluing FPC

Bonding

- The first row of ALPIDEs will be wire-bonded to an edge-FPC (just like final ITS3)
- The rest will be bonded to FPC on Exoskeleton via long wires

Summary

- Super-ALPIDEs are produced and picked up successfully
- Testing setup with a exoskeleton is ready
- Bonding super-ALPIDEs are in progress
- Wafer-scale chips will be handled via Know-how learnt from super-ALPIDES