e-CT – Computed Tomography with Electrons

Scattering / Material Budget based Imaging at Electron Accelerators

Paul Schütze, Simon Spannagel 2/2/22

Concept

Multiple Scattering & Material Budget

Coulomb Scattering, Highland Formula

- High-energy particles undergo multiple Coulomb scattering when traversing material
 - → Particle is deflected
- Scattering angle distribution:
 Gaussian-like center with tails at larger angles
- Width of Gaussian-like center well predicted by the Highland formula:

$$\theta_{x,y} = \frac{13.6 \,\text{MeV}}{\beta cp} \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right)$$

x: Path length in the material

X₀: Material's radiation length

 $\varepsilon = x/X_0$: Material Budget

Measurement: Scattering angle distribution

Characteristic quantity: Material budget

The Work so Far

Track-based Multiple Scattering Tomography

Track-based Multiple Scattering Tomography

Position-resolved measurement of the material budget via the deflection angle

- Single-particle tracking before and after the sample under test (SUT)
 using so-called beam telescopes multi-plane (silicon) tracking detectors
- Measurement of the scattering angle at the SUT
- Extrapolation of the track to the position of the sample
- Four steps:
 - Illuminate a sample with a charged particle beam
 - Measure the *hits* in the **pixel** sensor planes around it
 - Reconstruct the particle trajectories through the telescope
 - Extract the width of the kink angle distribution

Measurement Setup

Accelerator, beam line & beam telescope

- DESY II Test Beam
 - Positron or electron beams created from primary bunch via bremsstrahlung / pair conversion target
 - Beam energy: 1 6 GeV
 - Particle rate: < 50 kHz

(energy dependent)

- Three beam lines available, all equipped with...
- Beam telescopes
 - Six Mimosa26 MAPS sensors
 - Pixel Pitch: 18.4 μm x 18.4 μm
 - Active area: 10.6 mm x 21.2 mm
 - Intrinsic sensor resolution: > 3.24 μm
- Track resolution at SUT: $\sigma \sim 2 \mu m$

Track Reconstruction & Material Budget Estimators

Combining robustness with contrast

- Track model needs to allow kinks at scatterers
 - Using General Broken Lines
 - Find the most probable trajectory based on the measured hits
 - Uncertainties weighted with (known) detector materials to include multiple scattering in telescope
 - Kink angle at the sample:
 Local, unbiased parameter in the track model
 - Volume scatterer approximated by two thin scatterers
- Estimator for distribution width not straight forward
 - Gaussian shape only approximation
 - Need statistically robust method with high sensitivity for good contrast
 - E.g. Average Absolute Deviation of the inner 90% quantile
- Many more parameters: voxel size, required statistics

Image Reconstruction

2D measurement of the scatterer material budget

- Illumination of the scatterer, reconstruction of individual particle tracks
- Division of the image plane (SUT) into regions (pixels)
- Calculation of scattering angle for every track, determination of scattering angle distribution width individually for each pixel
- Calibration of the scattering width to material budget using known-thickness known-material scatterers
- Result: projection of the material budget
 Data & simulation compare very well
- Material budget of LHC tracking detector layers (CMS & ATLAS upgrades, complex CF with glue)

First Applications in High-Energy Physics

Measurement of detector structures & comparison with simulations

- CMS Phase II Tracker Upgrade
 - CF foam with cooling pipe & face sheets
 - Glue layers visible in material budget

- ATLAS ITk Upgrade
 - Measurement of endcap petal structures
 - PCBs, CF honeycomb structure

- Belle-II Silicon Vertex Detector
 - Comparison of material budget measurement with detailed simulations

3D Computed Tomography

Reconstruct the 3rd dimension from repeated measurements

- Repeated projection measurement at different angles
- Generate sinogram from individual images
- Perform inverse radon transform to reconstruct internal material budget distribution
 - → Computed tomography

Comparison: X-Ray CT

Pros and cons to conventional computed tomography

- X-rays attenuation length significantly shorter than radiation length of high-energy particles – example: Lead
 - X-ray attenuation length:~0.1 mm (50 keV) / ~0.7 mm (200 keV)
 - Radiation length (GeV electrons): 5.6 mm

Geesthacht
Zentrum für Material- und Küstenforschung

- GeV electrons can serve as probe for thicker materials
- High-Z materials can be probed with high precision
 - Simulation: after calibrating for material,
 even higher contrast achieved for lead samples than aluminum
- Strongly reduced beam hardening effects

Status Quo

Computed tomography via scattering distribution of electrons

- Reconstruction of 3D material structure using multiple scattering distributions achieved, both from simulation and measured data
- Computed tomography achieves good contrast, better for larger material budget
- Acceptance area limited to telescope sensors to ~ 1 cm x 2 cm
- Limited by statistics
 - Individual particle tracking
 - Measurement time for one sample ~ 3 days

- With faster response, could this method be of broader interest?
- Industrial & clinical applications / diagnosis tool?
- Can we decrease measurement time by orders of magnitude?

A New Approach

Integrated-intensity-based Multiple Scattering Tomography

Intensity-Based Measurements

Making use of high-performance beams

- Up till now, particle track position used to identify relevant pixel / voxel of final image
- Turning things around:
 use pencil beam to raster the sample, beam position dictates voxel size & position
- Single detector records absolute beam size after scattering as function of the position,
 Single-shot many-particle measurement of scattering width
- Requirements:
 - Well-controlled, small beam spot @ sample
 - Controlled relative movement beam ↔ sample
 - High repetition rate for fast image recording
 - Fast detectors with large dynamic range

@ DESY:

PITZ – Zeuthen ARES – Hamburg

Detector Options

· AGIPD

- Large area
- High dynamic range, if functioning in adaptive gain mode
- Available on loan by developers @ DESY FS
- Requires implementation of data acquisition

Timepix3

- Smaller area
- Lower, but tolerable dynamic range
- Available at almost any time @ DESY FH
- Data acquisition ready
 - → Suitable candidate for proof-of-principle measurements

Scattering Distribution & Sample Distance

Allpix² Simulations with AGIPD Sensor Geometry

22 MeV, 1000 electrons 100 um transverse size plexiglass cylinder, 3mm rad.

Summary

Summary & Outlook

e-CT imaging based on material budget measurements with electrons

- Single-particle tracking e-CT shown to perform well
 - Simulation, calibration, data taking performed at DESY II synchrotron beam lines
 - Already used by high-energy physics experiments to measure detector component properties
 - Measurement time prohibitively long for wider application in industry / medical applications
- Novel approach using one-shot intensity-based scattering measurements
 - Reduces required measurement time by orders of magnitude
 - Rastering of sample either by beam or by motion stage
 - Single detector record widened beam after scattering interaction in sample
- Simulations & detector / DAQ preparations ongoing, funding application for postdoc & PhD student pending
- We are hoping for some first beam time in 2022!

Thank you

Contact

DESY. Deutsches Simon Spannagel

Elektronen-Synchrotron FH-ATLAS

Simon.spannagel@desy.de

www.desy.de +49-40-8998-2794