AFP Acceptance Study

QT: The Study of the Potential for a Joint-Data Taking Between ATLAS, AFP, ZDC and LHCf Detectors

Yusuf Can Cekmecelioglu Zeuthen, 25.01.2022

Motivation

- Diffraction processes are poorly understood yet make up ~10% of total LHC cross-section.
- The forward studies at LHC aim to improve MC generators for cosmic ray air showers and pile-up modelling by studying these diffraction events.

- Diffractive processes, in general, are identified by the large rapidity gaps at the final state.
- Single diffractive (SD) processes have one intact proton and one dissociated proton after a color singlet "Pomeron" exchange.

Motivation

- Single diffractive processes have been studied before with only neutral particle data coming from the LHCf or ZDC.
- A joint data-taking between LHCf, ZDC and AFP could improve the identification and kinematic reconstruction of single diffractive processes.
- The combination of LHCf and ZDC detectors also promises an improvement in the energy resolution of neutral particle detection.

ATLAS Forward Proton (AFP)

AFP is a proton detection system placed on one of the beam pipes on each side of the ATLAS.

The near station is placed at "205m, and the far station is at "217m".

: collimators, dipoles, quadrapoles, kickers etc.

- The code performs "a basic transportation" for protons from IP1 to AFP stations.
- The position of the protons are calculated by magnetic fields (dipoles, quadropoles etc.) acting as optical lenses stacked one after.
- "The transformation matrix elements" or "twiss parameters" for each magnetic interaction point are read from a "twiss file".

Phase space of the beam

Twiss Parameters:

$$\begin{aligned} \alpha(s) &= -\frac{1}{2}\beta'(s) \quad \text{, where } \beta'(s) = \frac{d\beta}{ds} \\ \gamma(s) &= \frac{1+\alpha^2(s)}{\beta(s)} \end{aligned}$$

where "s" is the longitudinal displacement around the LHC and " ε " is emittance.

Crossing-Angle and Beta* Definitions

Crossing Angle

- The angle between two crossing bunches.
- Lower the angle higher the luminosity (collisions).
- For our study crossing-angle is chosen to be 290 µrad.

- The amplitude function, β , is determined by the accelerator magnet configuration and powering.
- If β is low, the beam is narrower, "squeezed". If β is high, the beam is wide and straight.
- Amplitude function at the interaction point is called β^* .
- For our study β^* is chosen to be 19 m.

Sometimes β^* is referred as the distance from the focus point that the beam width is twice as wide as the focus point.

- By using transport matrices new coordinates are measured for each interaction point and passed to the next one.
- At the end, the protons arrived to the stations and the ones lost (collimators, magnets etc.) in the process are identified.

- The analysis code uses an uniform distribiton for starting proporties of the protons.
- The steps of the loops can be adjusted to create more or less data points.
- The beam represented from its center as the proton having E=6.5 TeV ¹ and Pt=0.

¹ The forseen Run 3 beam energy is 6.8 TeV. Therefore, creating a new twiss file for this energy will be next.

Beam Width Plots

The x-axis of the plots are in the same order as the protons path followed in the LHC, taking "0" as IP1.

Beam Trajectory Plots

Near Station Plots

The plots show the trajectory of the proton in the beam center in "x" and "y" separately.

Method:

Collection of each step data of "x" and "y" positions for a proton with E = 6500 GeV and pT=0.

Acceptance Calculation

To consider the detector-beam distance and the detector active area in the LHC machine:

Cut on "y position" to consider the detector active area in the vertical:

-10 mm < Y < +10 mm

Cut on "x position" for reached protons in the "negative x" only:

 X_{beam} - 11* σ_{beam} - 0.8 mm (safety measure) – 16.2 mm (detector area) < X < X_{beam} - 11* σ_{beam} - 0.8 mm

Acceptance Plots

Beam settings for the Twiss file: "beta* = 19.2 m" and "crossing-angle=-290 µrad".

• Changing collimator settings changes acceptances dramatically.

Acceptance Plots

Beam settings for the Twiss file: "beta* = 19.2 m" and "crossing-angle=-290 µrad".

- Yet, the dramatic change stops at some point and then the change itself. Above the 80 σ_{beam} for TCL4 acceptances stay the same (see backup slide).
- Which suggests there is an optimum point for the collimator settings.

For AFP studies:

- The creation of new Twiss files for different energy, beta*, and crossing-angles for optimization within reasonable² values.
- Investigation of the best collimator settings within the allowed values.

For ZDC/LHCf studies:

- Either creation or rescale of the existing MC simulation data.
- Analysis of common acceptances for ZDC and LHCf detectors with the consideration of AFP acceptances.
- The re-do of the studies for the planned proton-Oxygen run.

²Reasonable in terms of allowance from the LHC machine and accordingly to the analysis of ZDC/LHCf detectors will show.

Acceptance Plots

Beam settings for the Twiss file: "beta* = 19.2 m" and "crossing-angle=-290 µrad".

<u>Collimator settings</u>: TCL4 at 60 σ_{beam} , TCL5 at 120 σ_{beam}

- Energy is changed to 6800 GeV as proposed value for Run 3.
- However, since the beta (twiss) values are stayed the same, the results might not represents the real values.
 - For that new twiss files are needed to be created with the new energy.

- The code performs "a basic transportation" for protons from IP1 to AFP stations.
- The position of the protons are calculated by magnetic fields (dipoles, quadropoles etc.) acting as optical lenses stacked one after.
- "The transformation matrix elements" or "twiss parameters" for each magnetic interaction point are read from a "twiss file".

Hill's Equation:

x'' + K(s)x = 0 (equation of motion), where "s" is the beam direction.

Solution to Hill's equation:

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} cos(\varphi(s) + \varphi_0)$$

where
$$\varphi(s) = \int_0^s \frac{ds}{\beta(s)}$$

 $\alpha(s) = -\frac{1}{2}\beta'(s) \quad \text{, where } \beta'(s) = \frac{d\beta}{ds}$ $\gamma(s) = \frac{1 + \alpha^2(s)}{\beta(s)}$

Twiss Parameters:

Emittance:

$$\boldsymbol{\varepsilon} = \boldsymbol{\gamma}(s) \, \boldsymbol{x}^2(s) + 2\boldsymbol{\alpha}(s)\boldsymbol{x}(s)\boldsymbol{x}'(s) + \boldsymbol{\beta}(s) \, \boldsymbol{x'}^2(s)$$

Phase space of the beam

Liouville's theorem: Under the influence of conservative forces the particle density in phase space is constant.

$$\text{Transportation Matrix:} \quad \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left[\cos\varphi_s + \alpha_0 \sin\varphi_s\right] & \sqrt{\beta_s\beta_0} \sin\varphi_s \\ \frac{1}{\sqrt{\beta_s\beta_0}} \left[(\alpha_0 - \alpha_s)\cos\varphi_s - (1 + \alpha_0\alpha_s)\sin\varphi_s\right] & \sqrt{\frac{\beta_s}{\beta_0}} \left[\cos\varphi_s - \alpha_s \sin\varphi_s\right] x'_0 \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$

By knowing Twiss parameters in two points, one can calculate the new position without knowing elements in between.

DESY. | Qualification Task | Yusuf Can Cekmecelioglu