AFP Acceptance Study

QT: The Study of the Potential for a Joint-Data Taking Between ATLAS, AFP, ZDC and LHCf Detectors

Yusuf Can Cekmecelioglu
Zeuthen, 25.01.2022

Motivation

- Diffraction processes are poorly understood yet make up $\sim 10 \%$ of total LHC cross-section.
- The forward studies at LHC aim to improve MC generators for cosmic ray air showers and pile-up modelling by studying these diffraction events.
- Diffractive processes, in general, are identified by the large rapidity gaps at the final state.
- Single diffractive (SD) processes have one intact proton and one dissociated proton after a color singlet "Pomeron" exchange.

Diffraction Processes

hard interactions

Perturbative QCD
non-diffractive
diffractive

Large rapidity gap

Motivation

- Single diffractive processes have been studied before with only neutral particle data coming from the LHCf or ZDC.
- A joint data-taking between LHCf, ZDC and AFP could improve the identification and kinematic reconstruction of single diffractive processes.
- The combination of LHCf and ZDC detectors also promises an improvement in the energy resolution of neutral particle detection.

Pomeron exchange between two protons

ATLAS Forward Proton (AFP)

AFP is a proton detection system placed on one of the beam pipes on each side of the ATLAS.

The near station is placed at " 205 m , and the far station is at "217m".
\rightarrow : protons
| : collimators, dipoles,
quadrapoles, kickers etc.

Analysis Code

- The code performs "a basic transportation" for protons from IP1 to AFP stations.
- The position of the protons are calculated by magnetic fields (dipoles, quadropoles etc.) acting as optical lenses stacked one after.
- "The transformation matrix elements" or "twiss parameters" for each magnetic interaction point are read from a "twiss file".

Phase space of the beam

Twiss Parameters:

$$
\begin{aligned}
& \alpha(s)=-\frac{1}{2} \beta^{\prime}(s) \quad, \text { where } \beta^{\prime}(s)=\frac{d \beta}{d s} \\
& \gamma(s)=\frac{1+\alpha^{2}(s)}{\beta(s)}
\end{aligned}
$$

where " s " is the longitudinal displacement around the LHC and " ε " is emittance.

Crossing-Angle and Beta* Definitions

Crossing Angle

- The angle between two crossing bunches.
- Lower the angle higher the luminosity (collisions).
- For our study crossing-angle is chosen to be 290 $\mu \mathrm{rad}$.

Beta Function

- The amplitude function, β, is determined by the accelerator magnet configuration and powering.
- If β is low, the beam is narrower, "squeezed". If β is high, the beam is wide and straight.
- Amplitude function at the interaction point is called β^{*}.
- For our study β^{*} is chosen to be 19 m .
Sometimes β^{*} is referred as the distance from the focus point that the beam width is twice as wide as the focus point.

Analysis Code

- By using transport matrices new coordinates are measured for each interaction point and passed to the next one.
- At the end, the protons arrived to the stations and the ones lost (collimators, magnets etc.) in the process are identified.

- The analysis code uses an uniform distribiton for starting proporties of the protons.
- The steps of the loops can be adjusted to create more or less data points.
- The beam represented from its center as the proton having $\mathrm{E}=6.5 \mathrm{TeV}^{1}$ and $\mathrm{Pt}=0$.
${ }^{1}$ The forseen Run 3 beam energy is 6.8 TeV . Therefore, creating a new twiss file for this energy will be next.

Beam Width Plots

The x-axis of the plots are in the same order as the protons path followed in the LHC, taking " 0 " as IP1.

Calculation:

$$
\sigma_{x, y}=\sqrt{\frac{\beta_{x, y \cdot \epsilon}}{\gamma}} \quad \gamma=\frac{E_{B e a m}}{m_{p}}=\frac{6.5 \times 10^{12}}{938 \times 10^{6}} \quad, \mathrm{c}=1, \epsilon=3.5 \times 10^{-6}
$$

Beam Trajectory Plots

Near Station Plots

The plots show the trajectory of the proton in the beam center in " x " and " y " separately.

Method:

Collection of each step data of " x " and " y " positions for a proton with $E=6500 \mathrm{GeV}$ and $\mathrm{pT}=0$.

Acceptance Calculation

$$
\begin{gathered}
\text { acceptance }=\frac{{\# \text { proton }_{\text {reached }}}_{\# \text { proton }_{\text {total }}}^{\text {for the protons sharing the same } \xi \text { and pT, where } \quad \xi=\frac{E_{\text {beam }}-E_{\text {proton }}}{E_{\text {beam }}}}}{E_{\text {beam }}=6.5 \mathrm{TeV}, \quad E_{\text {proton }}=\text { Scattered proton (energy assigned from the "for loop") }}
\end{gathered}
$$

To consider the detector-beam distance and the detector active area in the LHC machine:

Cut on "y position" to consider the detector active area in the vertical:

$$
-10 \mathrm{~mm}<\mathrm{Y}<+10 \mathrm{~mm}
$$

Cut on "x position" for reached protons in the "negative x " only:

$$
X_{\text {beam }}-11^{*} \sigma_{\text {beam }}-0.8 \mathrm{~mm} \text { (safety measure) }-16.2 \mathrm{~mm} \text { (detector area) }<X<X_{\text {beam }}-11^{*} \sigma_{\text {beam }}-0.8 \mathrm{~mm}
$$

Acceptance Plots

Beam settings for the Twiss file: "beta* = 19.2 m" and "crossing-angle=-290 μ rad".
Collimator settings: TCL4 at $20 \sigma_{\text {beam }}$, TCL5 at $40 \sigma_{\text {beam }}$
AFP Near Station (205.217m)

- Changing collimator settings changes acceptances dramatically.

Acceptance Plots

Beam settings for the Twiss file: "beta* = 19.2 m" and "crossing-angle=-290 μ rad".

Collimator settings: TCL4 at $60 \sigma_{\text {beam }}$, TCL5 at $120 \sigma_{\text {beam }}$ AFP Near Station (205.217 m)

TCL4 at $80 \sigma_{\text {beam }}$, TCL5 at $160 \sigma_{\text {beam }}$

- Yet, the dramatic change stops at some point and then the change itself. Above the $80 \sigma_{\text {beam }}$ for TCL4 acceptances stay the same (see backup slide).
- Which suggests there is an optimum point for the collimator settings.

Next

For AFP studies:

- The creation of new Twiss files for different energy, beta*, and crossing-angles for optimization within reasonable ${ }^{2}$ values.
- Investigation of the best collimator settings within the allowed values.

For ZDC/LHCf studies:

- Either creation or rescale of the existing MC simulation data.
- Analysis of common acceptances for ZDC and LHCf detectors with the consideration of AFP acceptances.
- The re-do of the studies for the planned proton-Oxygen run.
${ }^{2}$ Reasonable in terms of allowance from the LHC machine and accordingly to the analysis of ZDC/LHCf detectors will show.

Back Up

Acceptance Plots

Beam settings for the Twiss file: "beta* = 19.2 m" and "crossing-angle=-290 μ rad".

Collimator settings: TCL4 at $60 \sigma_{\text {beam }}$, TCL5 at $120 \sigma_{\text {beam }}$
AFP Near Station (205.217m)

TCL4 at $80 \sigma_{\text {beam }}$, TCL5 at $160 \sigma_{\text {beam }}$

- Energy is changed to 6800 GeV as proposed value for Run 3 .
- However, since the beta (twiss) values are stayed the same, the results might not represents the real values.
- For that new twiss files are needed to be created with the new energy.

Analysis Code

- The code performs "a basic transportation" for protons from IP1 to AFP stations.
- The position of the protons are calculated by magnetic fields (dipoles, quadropoles etc.) acting as optical lenses stacked one after.
- "The transformation matrix elements" or "twiss parameters" for each magnetic interaction point are read from a "twiss file".

Hill's Equation: $\quad x^{\prime \prime}+K(s) x=0 \quad$ (equation of motion), where " s " is the beam direction.

Solution to Hill's equation:

$$
\begin{aligned}
& x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left(\varphi(s)+\varphi_{0}\right) \\
& \text { where } \varphi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
\end{aligned}
$$

Analysis Code

Twiss Parameters:

$$
\alpha(s)=-\frac{1}{2} \beta^{\prime}(s), \text { where } \beta^{\prime}(s)=\frac{d \beta}{d s}
$$

$$
\gamma(s)=\frac{1+\alpha^{2}(s)}{\beta(s)}
$$

Emittance:

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

Phase space of the beam
Liouville's theorem: Under the influence of conservative forces the particle density in phase space is constant.
Transportation Matrix: $\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{cc}\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left[\cos \varphi_{s}+\alpha_{0} \sin \varphi_{s}\right] & \sqrt{\beta_{s} \beta_{0}} \sin \varphi_{s} \\ \frac{1}{\sqrt{\beta_{s} \beta_{0}}}\left[\left(\alpha_{0}-\alpha_{s}\right) \cos \varphi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \varphi_{s}\right] & \sqrt{\frac{\beta_{s}}{\beta_{0}}}\left[\cos \varphi_{s}-\alpha_{s} \sin \varphi_{s}\right] x^{\prime}{ }_{0}\end{array}\right) \cdot\binom{x_{0}}{x_{0}^{\prime}}$
By knowing Twiss parameters in two points, one can calculate the new position without knowing elements in between.

