

BCM1F TDCs

Roberval Walsh DESY

BCM Workshop Zeuthen, 14.10.2010

Outline

- Introduction
- Hardware
- Readout and data
- Data analyses
- High performance TDC studies
- Summary

- Aim of the TDCs is to provide time information of individual bunches.
 - Precise measurements of:
 - time-of-flight;
 - bunch identification;
 - detector material decay (see talk on albedo);
 - monitoring beam dumps (see talk on dump studies and ring buffer).

Hardware

- TDC board model: CAEN v767.
- Run in continuous storage mode.
- Readout with transfer blocks of 16 kbytes 32 bit words.
- Resolution 0.8 ns/bin.
- Double hit resolution 10 ns.
- Input signals: hits from discriminators and orbit trigger.
- Look-up table (LUT) provides signal to VETO data into the TDCs during readout.

Readout and data

- The readout codes read the information from the TDCs via block transfers (BLT) and store the raw data in root files.
- Source codes are been transferred to an SVN repository at the DESY SVN server (https://svnsrv.desy.de)
- Readout deadtime during a BLT: ~3.5 ms (40 orbits)
- The advantage of root files is that handling large amount of data one has faster I/O and smaller size of the data files, in both cases a factor 10 compared with ASCII.
- Data files have a maximum size of 1.5 Gbytes. A new file is automatically created when this limit is reached or when it turns mid-night, whatever comes first.
- With the fills from end of August the amount of data was ~3 Gbytes/day.
- The data is automatically stored in CASTOR daily together with the other BRM data.

Observed shifts of the peaks of the colliding bunches in the time distributions.

- Correct the peak position with respect to the orbit trigger.
- Fitting a gaussian around the peaks in the time distributions of the colliding bunch.
- Time distributions around each colliding bunch are shifted by a well-defined amount *t* (in ns) given the bunch number provided by the LHC.

$$bn = \frac{t - 6290}{24.9505} + 1$$

- Using only orbits with size in the range (88923,88924) ns reducing jittering effects.
- Using fill 1262 (04-05.08.2010) ...
 - 16 colliding bunches:
 1, 101, 201, 301, 401, 501, 601, 701, 1786, 1886, 1986, 2086, 2186, 2286, 2386, 2486

Time distribution for the shifted peaks of all bunches for each channel.

- Large spread of the time of the peaks between channels.
- Time correction factors obtained with data from fill 1262 and applied to data of the fill 1298.

Bunch #1: AFTER calibration. Peaks are at the same position.

- For non-colliding bunches the time-of-flight of the beam-halo particles are resolved.
 - Plots show hits versus TDC time of pairs of channels in different planes and same azimuthal angle.
 - 'Distance' between peaks of the same bunch: ~12 ns
 - Systematically large rates in +z channels from beam2.
 Castor?

 Bunch structure extracted using BCM1F time information

$$bn = \frac{t - 6290}{24.9505} + 1$$

- Spot bunches producing larger background.
- Information provided 'semi-online' to the BRM shifters.

- Coincidences of back-to-back channels.
 - Coincident hits time difference, for pairs with the <u>smallest</u> time difference.
 - Define a time window close/ around the colliding peak.
 - To do: Define a small time window (~4ns) and scan the whole colliding distribution.

- Time resolution
- VERY PRELIMINARY!
- Time window of ±2 ns around de colliding peak.

Gaussian fit (ns)

$\mu = 0.15\pm0.13$ $\sigma = 1.76\pm0.14$	$\mu = 0.52 \pm 0.18$ $\sigma = 1.77 \pm 0.14$
$\mu = 0.28 \pm 0.14$ $\sigma = 1.58 \pm 0.16$	$\mu = -0.37 \pm 0.15$ $\sigma = 1.67 \pm 0.15$

 Compatible with published value using the ADCs (1.8 ns)

bunch #1 – corrected ±2 ns around the peak

- Time window ±10 ns around peak: t = (6280,6300) ns
- Secondary peaks at ±6 ns!?
 - Extra bucket?
 - e[±] clusters predicted in simulation?
 - ???
- Secondary peaks at ±12 ns.
 - Beam halo
 - Beam halo + collision
 - Aren't the rates high?

bunch #1 – corrected ±10 ns around the peak

Here is $\Delta t = 0 \rightarrow$ of coincident hits

HPTDC studies

M. Hempel & E. Castro

- Studies of a high performance TDC (HPTDC) were performed in Zeuthen.
- Board model: CAEN v1290
- Characteristics:
 - Block transfers of maximum 1 kbyte (vs 16 kbytes of v767)

Module	LSB	double hit resolution	FIFO size	BLT
v1290 (HPTDC)	800 ps	5 ns	32k	1k
	$200 \mathrm{\ ps}$			
	200 ps $100 ps$			
	20 ps			
v767 (TDC)	800 ps	10 ns	32k	16k

Table 1: Resolution Modes

time resolution (LSB)	# bits for time measurements	TDC counter range
800 ps	17 bit	$104 \ \mu s$
200 ps	19 bit	$104 \ \mu s$
100 ps	19 bit	$52~\mu s$

Table 2: Time resolution of HPTDC and counter range

Minimum resolution that can be possibly used in BCM1F is 0.2 ns

M. Hempel & E. Castro

- Block transfer
 - 1 kbyte BLTs
 - 40k acquisitons
 - trigger: 100 μs
 - 8 channels

time to fill buffer [ms]			—— HPT	DC
0 -	0	1000 # Hits/ms	2000	7

	HPTDC	TDC
T_{Hit}	time for BLT $[\mu s]$	time for BLT $[\mu s]$
$10 \ \mu s$	264	301
$2.5~\mu s$	259	293
$1~\mu s$	262	306
$500 \mathrm{ns}$	257	297
$200 \mathrm{ns}$	258	313

Table 6: Time for Block Transfer

BLT deadtime 40 μ s (1/2 orbit) faster for HPTDC. Independent on the rate.

- BCM1F TDCs are full operational and performing well.
- Many important information can be extracted from the TDCs data: time-of-flight, bunch structure, after-glow etc.
- Calibration and analysis of the data are ongoing. Many questions have been raised that need to be answered.
- Tests with a new board with a high performance TDC (HPTDC) were done.
 There are advantages using HPTDC but there limitations of the board make restrict its usage in the LHC environment with high luminosity.

Additional slides

- BCM1F repository created at DESY SVN Server (https://svnsrv.desy.de).
- Developers need to register first depending on the authentication...
 - For DESY people: Login using AFS account at https://svnsrv.desy.de/admin/desy
 - For others: Register at <u>https://svnsrv.desy.de/admin/basic</u>
- ... then select to join the BCM1F repository. I should receive a notification to approve your request to join.
- A wiki page is under construction with more instructions and basic SVN commands.
 - https://znwiki3.ifh.de/CMS/Bcm1fRepository

- Web view of repository at https://svnsrv.desy.de/websvn/wsvn/General.BCM1F?
- Projects for TDCs, Scalers and Analysis codes are already available.

- For different bunches expected that the peak positions fluctuate around a constant value.
- But found a slope!
- The factor 24.95 ns in $bn = \frac{t 6290}{24.95} + 1$

still is an approximation.

• Using 24.9505 ns instead...

• Channels 11 and 24 show the larger differences. The bumps should have an effect on the fits.

- Using Fill 1262
 - Bunch #1: calibration applied. Peaks are at the same position.

